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RESUMO

A navegação de águas restritas ainda é uma tarefa onde a Aprendizagem por Reforço
foi pouco explorada na comunidade científica. No entanto, tais algoritmos poderiam
potencialmente trazer leis de controle mais robustas e eficazes para o campo, onde a
automação possui diversos benefícios no evitamento de acidentes e redução da necessidade
da formação intensiva de pessoal (práticos). Este trabalho apresenta então a utilização
de algoritmos de Aprendizado por Reforço para o controle automático dos movimentos
de manobra de navios em águas restritas. A aprendizagem de uma lei de controle foi
realizada utilizando-se métodos de Deep Q Network e de Gradiente de Política (Deep
Deterministic Policy Gradient) em conjunto com um simulador numérico para manobras
de navios. A lei de controle aprendida pelos dois métodos apresentou boa resposta nas
simulações realizadas de navegação em um canal.

Palavras-Chave – Aprendizado por Reforço, Navegação Interior, Redes Neurais, Apren-
dizado Computacional.



ABSTRACT

The navigation on restricted waters using Reinforcement Learning methods is still too
little explored in the scientific community. However, such algorithms could potentially
result in more robust and efficient control laws on the field. This work thus presents the use
of Reinforcement Learning algorithms for the automated control of vessels maneuvering
movements in restricted waters. Control laws are learned using Deep Q Network and
Deep Deterministic Policy Gradient methods coupled with a numerical simulator for ship
maneuvers. The control law learned by both methods presented good responses on channel
navigation simulations.

Keywords – Reinforcement Learning, Inland Navigation, Neural Networks, Machine
Learning.
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1 INTRODUÇÃO

1.1 Contexto

A automação vem sendo utilizada para aumentar a eficiência de sistemas e processos, e

tem como um de seus objetivos diminuir ou substituir a intervenção humana em processos

nos quais a ocorrência de erros não é tolerada. O controle de navegação de sistemas de

transporte é um exemplo no qual a automação é pretendida para diminuir acidentes

ocasionados pela influência humana nos processos de pilotagem e controle.

Recentemente, a aplicação de redes neurais e outros métodos de aprendizagem por

máquina tem apresentado bons resultados na automação de sistemas de transportes tais

como automóveis, drones e helicópteros - os artigos de Gerla et al.(1) e Cutler e How(2)

são exemplos bem sucedidos dessa aplicação. Por outro lado, existem problemas nos quais

soluções concretas de automação ainda não foram plenamente desenvolvidas e aplicadas,

como é o caso do controle de navios em águas restritas.

Atualmente, a navegação em águas restritas é realizada por um comandante de navios

especializado nesse tipo de tarefa. O controle do navio é basado em seu conhecimento

das condições ambientais e meteorológicas locais e em sua experiência em atracamento

e transporte nessas regiões, exigindo, assim, profissionais experientes e específicos para

cada local.

Contudo, esse processo ainda apresenta riscos humanos, os quais são causa recorrente

de acidentes marítimos como mostra Hetherington, Flin e Mearns(3). Busca-se então,

na automação, uma alternativa para diminuição dos riscos associados ao processo de

manobras e navegação em águas restritas. Como mostra Ahmed e Hasegawa(4), tal tema

ainda está em aberto, sendo objeto de pesquisa pertinente para o setor náutico.

Este trabalho visa então a aplicação de Redes Neurais Artificiais (RNA) e algoritmos

de Aprendizagem por Reforço (APR) em conjunto com o simulador de manobras do

Tanque de Provas Numérico (TPN), descrito no trabalho de Filho, Zimbres e Tannuri(5),
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para o desenvolvimento de um sistema de controle de direção de um navio. O desempenho

de tais algoritmos é avaliado pela sua capacidade de navegar uma embarcação através de

uma determinada trajetória.

1.2 Estado da arte

A utilização de redes neurais aplicadas ao transporte em geral é recorrente na lite-

ratura desde a década de 1990, como vê-se no trabalho de Dougherty(6). No artigo de

Hafner e Riedmiller(7), apresenta-se sistemas de controle em que a aplicação de APR

foi bem sucedida, e demonstra-se que algumas adaptações são viáveis para a concepção

de controladores usando APR. Porém, como descreve Amendola(8), a aplicação na au-

tomação da manobra de navios ainda é assunto pouco explorado na literatura científica.

Um exemplo é o trabalho de Ahmed e Hasegawa(4), no qual utiliza-se um controlador de

navios em águas restritas assumindo trajetórias de navegação conhecidas.

A aplicação de APR para essas tarefas começou a ser investigada recentemente. Um

dos primeiros resultados de relevância presente na literatura é o de Stamenkovich(9), que

realizou um experimento utilizando um agente ator-crítico semelhante a um neurônio e

simulou a navegação de um navio através de um canal com o auxílio de sensores que

fornecem o rumo do navio, o ângulo entre o rumo e o grupo de boias mais próximo e

a distância até esse grupo. Lacki(10) comparou em seu estudo a aplicação dos algorit-

mos SARSA e Q-learning com um modelo discreto de estado para controlar o ângulo

de ataque da embarcação, na navegação em águas restritas com velocidade constante e

pequenos obstáculos. Mais recentemente, Rak e Gierusz(11) compararam a aplicação do

método Q-learning (on-line) usando uma discretização de estados e a Least Squares Po-

licy Iteration (LSPI) para estados contínuos usando aproximadores de função (off-line).

Neste estudo, o objetivo foi gerar a trajetória-guia de navegação usando APR, a partir de

uma determinada configuração do canal (disposição de obstáculos) que apresentava uma

posição final como objetivo. Amendola(8) utilizou uma estratégia de APR usando Fitted

Q-Iteration com batchs de simulações geradas com o simulador de manobras do TPN,

através de uma discretização das ações de controle e usando uma velocidade de navegação

variável, com o objetivo de seguir uma linha-guia em um canal. Os resultados obtidos, no

entanto, não foram satisfatórios e a embarcação obteve movimentos oscilatórios ao redor

da linha-guia a partir da política de navegação aprendida pelo algoritmo.
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1.3 Objetivos e especificações

O objetivo principal desse trabalho é aplicar métodos de APR que sejam capazes de

controlar a navegação de um navio em águas restritas. Para tanto, utiliza-se o algoritmo

Q-learning (model-free) em conjunto com o simulador fast-time para criar um controlador

de direção que seja capaz de manter o navio em uma trajetória de navegação através de

um canal.

O interesse nessa tarefa é avaliar a capacidade do algoritmo APR no controle de

direção (leme) e de velocidade (propulsão) do navio. Como objetivo secundário potencial

pretende-se desenvolver outros tipos de algoritmos APR e compará-los ao algoritmo Q-

learning.

1.4 Métodos

Este trabalho segue as tendências recentes na comunidade de machine learning e de-

senvolve um modelo de Aprendizado por Reforço do tipo Q-learning, aplicado ao controle

de trajetória de um navio. Exemplos bem-sucedidos de Q-learning aplicados à controle

são apresentados por Nagendra et al.(12) e Kiumarsi et al.(13).

Atualmente a difusão de técnicas de aprendizagem por máquinas tem sido incentivada

por comunidades de desenvolvimento de software e por grandes corporações, como o Go-

ogle. Através do suporte e fornecimento de ferramentas em código-aberto (open-source),

essas empresas buscam fomentar o desenvolvimento rápido dessa tecnologia.

Nesse contexto, as bibliotecas de aprendizagem de máquina e aprendizagem profunda

Keras e Tensorflow foram selecionadas para o uso nesse trabalho em razão de sua poten-

cialidade, flexibilidade de uso e grande comunidade de colaboradores. Outra biblioteca

também utilizada foi a OpenAI Gym, a qual propõe uma estrutura para o modelo de

formulação de problemas de APR.

Como mencionado anteriormente, os dados utilizados para treinar o modelo são obti-

dos através de uma simulação de navegação fast-time. Em resumo, a simulação reproduz

um modelo complexo do navio desenvolvido pelo TPN, a qual recebe como entradas as

ações de comando de leme e propulsão, em seguida calcula a evolução do espaço de estados

do navio para um intervalo de tempo desejado, utilizando o método de Runge-Kutta de

ordem 4 e fornece como saída os estados atualizados no fim da integração. Os comandos

passados para o simulador podem ser decididos em modo offline ou em modo online de
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aprendizagem.

O desenvolvimento de um modelo de aprendizado por máquina do tamanho e da

complexidade do modelo Q-learning requer uma série de escolhas de projeto envolvendo

múltiplos hiperparâmetros que definem a arquitetura do modelo e o algoritmo de trei-

namento. Encontrar o conjunto ideal desses parâmetros não é viável devido ao grande

espaço de busca e ao custo computacional da execução do sistema. Portanto, extraímos

intuições dos trabalhos existentes (Ahmed e Hasegawa(4), Xu et al.(14)) e seguimos al-

gumas heurísticas do campo náutico para desenhar o modelo de APR. Detalhes sobre as

heurísticas e intuições utilizadas são apresentados no capítulo 6.

1.5 Organização

Essa monografia está organizada em oito capítulos. O capítulo 1 introduz o tema a

ser abordado, faz uma revisão do estado da arte, traça objetivos e especificações gerais

do projeto e discute os métodos que serão testados. O capítulo 2 faz uma análise da

missão da solução exposta nesta monografia, definindo tanto seus requisitos funcionais e

de desempenho, bem como seus modos de operação. O capítulo 3 faz uma introdução

teórica à Aprendizagem de Máquina e suas vertentes, em especial às Redes Neurais e ao

paradigma da Aprendizagem por Reforço. O capítulo 4 mostra o modelo dinâmico de

embarcação utilizado neste estudo e o simulador numérico que realiza a integração deste

modelo para obter a resposta do sistema. O capítulo 5 aborda trabalhos relacionados que

serviram de base para construção da solução. O capítulo 6 descreve a solução proposta

para o problema exposto na Introdução. O capítulo 7 expõe os resultados obtidos com a

solução descrita. Finalmente, o capítulo 8 discute as possíveis conclusões e perspectivas

que decorrem dos resultados.
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2 ANÁLISE E REQUISITOS

Neste capítulo, o projeto é analisado a partir da perspectiva funcional e construtiva

do sistema à partir da missão proposta. Primeiro, define-se formalmente a missão do

sistema, em seguida, define-se os requisitos necessários para o cumprimento da missão

proposta, por fim, realiza-se uma análise funcional do sistema proposto e classifica-se seus

principais blocos construtivos.

2.1 Missão

A missão deste trabalho é criar uma política de controle de navegação inteligente que

seja capaz de guiar um navio ao longo de um canal de águas restritas, guiando-o através

de uma trajetória pré-definida. A missão do nosso sistema é traduzida pela formulação

abaixo:

Seja S(t) o vetor de estados de interesse para navegação do navio.

Seja A(t) um conjunto de ações do agente para controle do navio.

Seja Pr(S(t + 1) = s′|S(t) = s, A(t) = a) a probabilidade de transição do estado s

para o estado s′ sob uma ação a.

Seja R(s, a, s′) uma função de recompensa que traduz o acerto do navio em relação à

uma trajetória-guia pré-definida (equivalente à penalizar o desvio).

O objetivo é treinar um agente para afim de obter o conjunto de ações A(t) que

maximizem a soma de recompensas coletadas durante uma trajetória resultante desse

conjunto de ações.

Para tanto, o agente deve ser treinado para otimizar uma política de decisão A(t) =

π(S(t)) à partir de um ambiente de simulação de navegação T que forneça a transição de

estados S(t+ 1) = f(S(t), A(t)), ou seja Pr.
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2.2 Definição de requisitos

As especificações definidas para realização da tarefa principal e secundária são resu-

midas a seguir:

2.2.1 Requisitos Primários (RP)

Os requisitos definidos que o sistema deve seguir para atingir a missão proposta são

os seguintes.

RP1 (Natureza do Sistema): O sistema deve ser do tipo modelo de aprendizagem por

reforço (APR), utilizando como proposta primária um algoritmo Q-Learning.

RP2 (Transição de estados): O sistema deve basear-se na transição de estados fornecida

pelo simulador fast-time de navegação em águas restritas do TPN.

RP3 (Variáveis de controle): A política de controle aprendida pelo APR deve atuar nos

comandos de leme e propulsor principal.

RP4 (Estados do navio): Os estados do navio, utilizados para construção da política de

ação, devem se limitar à: Posição espacial do navio (Xabs, Yabs), velocidade do navio

(Vx, Vy), ângulo de aproamento (θ) e velocidade angular (θ̇).

RP5 (Step de simulação): Utilização do tempo de integração do simulador fixo de 0.5 s.

RP6 (Implementação): Utilização do algoritmo Q-Learning no ambiente de desenvolvi-

mento python-Keras seguindo os modelos de implementação de interfaces do OpenAI

gym.

RP7 (Trajetória e ambiente): A trajetória-guia deve ser definida como sendo o conjunto

de coordenadas que definem um segmento de reta (Xinicial, Yinicial)); (Xfinal, Yfinal),

e deve estar contida um canal de largura definida, o qual, por sua vez, deve ser

definido como sendo o espaço Ecanal contido entre dois segmentos de reta rsup e rinf .

RP8 (Função de recompensa): A função recompensa deve punir o desvio do navio em re-

lação à trajetória-guia pré-definida (ou seja, recompensar a procissão da trajetória).

A função recompensa deve utilizar somente os estados do navio citados em RP4 e

as coordenadas da trajetória-guia e dos segmentos de reta que definem o canal.

RP9 (Intervalo de ação): O intervalo entre o envio de duas ações consecutivas para o

simulador deve fixo e ser superior ao tempo de resposta do algoritmo.
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RP10 (Desvio da trajetória): O desvio entre o centro do navio e a linha-guia (erro de

tracking) deve ser edesvio < 0.5W , onde W é a largura do navio.

RP11 (Desvio de velocidade): O desvio do setpoint de velocidade deve ser inferior à 10%.

2.2.2 Requisitos Secundários (RS)

Os requisitos secundários podem ser realizados para complementar o desenvolvimento

deste trabalho, mas que não são necessários para o cumprimento da missão proposta.

RS1 (Comparação): Desenvolvimento e aplicação de outros algoritmos de APR para

comparação com o método Q-learning.

RS2 (Complexidade): Geração de trajetórias-guia mais complexas após validação em

trajetória linear inicial.

2.2.3 Fatores de performance (FP)

Os fatores de performance são indicadores da qualidade de execução e aprendizagem

do sistema desenvolvido, os quais podem ser utilizados como métricas de avaliação de

diferentes algoritmos, no caso do comprimento do requisito RS2. Os fatores de interesse

para esse trabalho são descritos a seguir.

FP1 Número de iterações necessárias na fase de aprendizado para atingir os níveis de

performance requisitados.

FP2 Número de iterações necessárias para levar o navio até a linha guia (que se traduz

no tempo de resposta do controlador de APR).

2.3 Análise funcional

A análise funcional consiste em definir os principais blocos de construção do sistema

projetado. Essa divisão, além de ser o suporte para a criação do modelo de APR, também

facilita a compreensão do mesmo, exibindo as funcionalidades de cada bloco do sistema.

As funcionalidades definidas são apresentadas a seguir, cada uma delas atua em diferentes

modos de operação, como mostrado na seção 2.4.
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F1 (Agente): O agente é o nome dado à parte do sistema que recebe o estado atual

S(t) do ambiente e, baseado em uma política de ação A(t) = π(S(t)), realiza uma

ação de comando no navio para o controle de ângulo de leme β(t) e da potência do

propulsor Pu(t).

F2 (Ambiente): Ambiente é nome dado à parte do sistema que recebe um conjunto de

ações de controle leme e propulsor A(t) = [β(t), Pu(t)]
t vindas do agente, e as envia,

através de uma interface, ao simulador TPN. O ambiente obtém como resposta do

simulador um conjunto de estados S(t+ 1) vindos do simulador após o termino da

iteração e armazena o estado como variável interna.

F3 (Recompensa): Recompensa é o nome dado à parte do sistema que recebe um

conjunto de estados atuais do navio S(t), que foram resultado de uma ação A(t−1)

tomada pelo agente em um estado S(t− 1), e calcula um valor para de recompensa

R(t) = ψr(S(t), A(t− 1), S(t− 1)) para a ação tomada. Essa recompensa é baseada

no cumprimento ou não dos objetivos propostos, qual sejam, seguir uma trajetória-

guia proposta.

F4 (Aprendizado): Aprendizado é o nome dado à parte do sistema que recebe do sistema

que recebe um conjunto de estados atuais do navio S(t), que foram resultado de

uma ação A(t− 1) tomada pelo agente em um estado S(t− 1), resultando em uma

recompensa R(t). A partir desses dados, o Aprendizado é responsável por atualizar

a política de tomada de decisão π(S(t)), de forma a maximizar a soma de futuras

recompensas R(t+ 1).

F7 (Interface-simulador): Interface-simulador é o nome dado à parte do sistema res-

ponsável pela comunicação entre o ambiente de funcionamento do nosso sistema de

APR (Python-shell) e o ambiente de simulação de navegação (Software Comercial

TPN). Essa interface é utilizada para comunicação entre o Ambiente e o simulador.

F6 (Parâmetros-simulador): Parâmetros-simulador é o nome dado à parte do sistema

responsável por configurar os parâmetros do simulador TPN no instante antes do

início da simulação, tais como tempo de integração, condições ambientais para o

navio e número de iterações.

F7 (Parâmetros-Aprendizado): Parâmetros-Aprendizado é o nome dado à parte do

sistema responsável por configurar os parâmetros de aprendizado. Os parâmetros

de aprendizado são a taxa de exploração ε, que é responsável pela parte aleatória da

política de decisão π(S(t)), pela taxa de aprendizado α, que está relacionado com a
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importância dada a novos eventos durante a fase de aprendizagem, e pelo desconto

γ, que é a taxa de desconto dada à experiência obtida em iterações passadas.

F8 (Interface Gráfica): Interface-gráfica é o nome dado à parte do sistema responsável

pela visualização da navegação gráfica do navio, e dos estados de interesse S(t) do

navio.

O diagrama a seguir resume a funcionalidade de cada uma das partes do sistema.

Simulador
TPN

Agente Interface
SimuladorAmbiente

Recompensa

Interface Gráfica

Aprendizado

Sistema

A(t) A(t)

S(t+ 1)

A(t)

S(t+ 1)

S(t), A(t), S(t+ 1)
π(S(t))

R(t)

Parâmetros
Simulador

Parâmetros
Aprendizado

α, γ, ε

Figura 1: Diagrama de funcionalidades das partes do sistema

2.4 Modos de operação

Os modos de operação do sistema desenvolvidos são divididos em 3 partes:

• Aprendizagem: Nesse modo o sistema realiza a aprendizagem da política de ação a

partir da iteração do algoritmo de APR com o simulador TPN. Durante essa etapa

busca-se uma política ótima que maximize a recompensa recebida pelo agente.

• Ajuste: Esse modo é alternada com o modo de aprendizagem e consiste na escolha

de hiper-parâmetros, tais como como a função de recompensa e os parâmetros de

Aprendizagem, que são utilizados para avaliar o desempenho de aprendizagem do

algoritmo

• Inferência: Esse modo é o modo de inferência em que o Agente já sabe controlar a

navegação do navio, e não aprende mais com suas ações. Esse modo é o modo final

no qual o sistema opera para navegar em águas restritas.
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3 MACHINE LEARNING E APRENDIZAGEM

Este capítulo tem como objetivo apresentar ao leitor a teoria básica da aprendizagem

de máquina que foi considerada relevante para a compreensão deste e de outros trabalhos

apresentados como o estado da arte utilizado para a estruturação e desenvolvimento do

projeto.

Primeiramente apresenta-se uma breve introdução sobre Machine Learning e os mo-

delos de aprendizagem que são usualmente utilizados. Posteriormente apresenta-se o

conceito de Redes Neurais Artificiais e como tais são usualmente utilizadas para a apren-

dizagem profunda. Em seguida, introduz-se os processos de Markov e sua relação com

o problema de aprendizagem. Finalmente, apresenta-se o paradigma de Aprendizagem

por Reforço e os métodos Q-learning, Q-learning aproximado, Deep Q Network e Deep

Deterministic Policy Gradient.

3.1 Modelos de aprendizagem automática

O aprendizado de máquina é um campo de inteligência artificial que usa técnicas

estatísticas para dar aos sistemas de computador a capacidade de "aprender"a partir de

um conjunto de dados (por exemplo, melhorar progressivamente o desempenho de uma

tarefa específica), sem ser explicitamente programado para isso.

Segundo a definição de M. Mitchell, a aprendizagem de máquina (machine learning)

pode ser definida como: "Diz-se que um programa de computador aprende com a expe-

riência E em relação a alguma classe de tarefas T, e medida de desempenho P, se seu

desempenho nas tarefas em T, como medido por P, melhora com a experiência E."

Para "aprender", os métodos de aprendizagem utilizam técnicas estatísticas para cons-

truir modelos que permitem fazer previsões ou decisões guiadas a partir de um conjunto

de dados utilizados para a construção dos parâmetros de decisão do algoritmo. O conjunto

de dados em questão é genérico e pode referir-se à diversos tipos e estruturas, como por
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exemplo, imagens de um tipo de objeto, trechos de texto, vetores de espaço de estados de

um sistema simulado, entre outros.

A classificação é um exemplo de um dos tipos de tarefas realizadas frequentemente

utilizando-se a aprendizagem automática. Alguns dos problemas que são abordados por

algoritmos de classificação são a filtragem de e-mails de spam, reconhecimento de carac-

teres manuscritos, diagnósticos médicos, visão computacional, etc.

O aprendizado de máquina, porém, abrange temas genéricos e possui muitas sub-

áreas de aplicação. Tipicamente, para fins de organização, os métodos de aprendizagem

são divíduos em algumas grandes categorias, as quais dependem dos dados utilizados e

do modo de aprendizagem empregado pelo algoritmo. As principais categorias são as

seguintes:

• Aprendizado supervisionado: Realizado quando os dados utilizados possuem "eti-

quetas", que são fornecidas por algum "professor"(dados etiquetados previamente,

podendo ser feitos à mão ou por outro método). A tarefa de aprendizado consiste

então em determinar um modelo que leve as entradas (dados) às saídas (etiquetas)

a partir de um treinamento realizado com um conjunto de dados de treino. Esse

modelo é então utilizado para etiquetar novos dados. Exemplos tipo são as Máqui-

nas de Vetores de Suporte (SVM), regressão linear, árvores de decisão, k vizinhos

mais próximos, redes neurais artificiais e naive Bayes.

• Aprendizado não supervisionado: Nesse caso, utiliza-se dados não etiquetados, e o

objetivo do aprendizado é encontrar padrões ou características latentes dos dados

que permitam regrupá-los em categorias não definidas previamente.

• Aprendizado por reforço: Baseia-se na interação de um agente e um ambiente. O

agente toma decisões seguindo uma política nesse ambiente, que influenciam sua

transição de estados e a recompensa ganha a cada ação. O objetivo então é de

encontrar uma política ótima, ou seja, que maximize a recompensa ganha pelo

agente.

Este último tipo de aprendizagem é apropriado para a utilização no desenvolvimento de

uma lei de controle para navios, visto que a situação se enquadra na interação entre um

agente (controle do navio) e um ambiente (mar), e as decisões são os diferentes comandos

possíveis (propulsão e ângulo de leme).
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3.2 Aprendizagem supervisionada

Nesta seção são apresentados os métodos de Aprendizagem Supervisionada que foram

utilizados neste trabalho.

3.2.1 Redes Neurais Artificiais

3.2.1.1 Estrutura de uma Rede Neural

As Redes Neurais Artificiais (RNA) são modelos computacionais inspirados nas redes

neurais biológicas, originalmente inspirando-se no Sistema Nervoso Central dos animais,

notadamente no cérebro e no funcionamento dos neurônios e suas conexões.

O modelo de redes neurais artificiais é construído através da interconexão de neurônios

artificiais para a construção de uma rede neural (neural network), a qual é posteriormente

treinada e utilizada para resolver um problema específico.

Nesse sentido, o neurônio artificial é a entidade central na concepção de Redes Neu-

rais, pois é o elemento fundamental no qual a arquitetura dessas redes se baseia. A

estrutura de um neurônio artificial com entrada x ∈ Rd é composta de um vetor de pesos

w = [w1, w2, ..., wd], um viés b e uma função de ativação, que pode ser linear, tangente

hiperbólica, ReLU, etc. O funcionamento do neurônio no passo direto (forward pass)

pode ser dividido em duas partes: pré-ativação e ativação. A pré-ativação consiste na

multiplicação da entrada x = [x1, ..., xd]
t pelo vetor de pesos w e subsequente soma so

viés b, ou seja, w × x + b. A ativação consiste então na passagem desse resultado pela

função de ativação para obter a saída do neurônio. O diagrama da Figura 2 ilustra esse

funcionamento.

Σ
ϕ(.) y

b
função de
ativação

pesos
viés

w1

w2

wd

.

..

x1

x2

xd

entradas

saída

soma

Figura 2: Estrutura de um neurônio artificial
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As redes neurais são modelos flexíveis e os neurônios artificiais podem ser organizados

de várias maneiras, dependendo da aplicação específica. No entanto, a maioria das redes

neurais é estruturada em camadas, que são conjuntos de neurônios que não compartilham

nenhuma conexão. Nesse caso, o cálculo flui sequencialmente de uma camada para a

próxima, da entrada x para a saída y, interconectando-se os neurônios (Njk) em confi-

gurações como exemplificado na Figura 3, onde o número de camadas l e de neurônios

por camada ni varia dependendo da aplicação e da complexidade do problema. Quando

temos mais que duas camadas em uma RNA costuma-se falar então em Aprendizagem

Profunda (deep learning, em inglês).

Como esse tipo de rede não inclui nenhum ciclo em seu gráfico computacional, ele é

chamado de rede feedforward. Cada camada em uma rede neural feedforward pode ser

interpretada como uma função em si e em toda a rede como composição dessas funções.

Como exemplo, se f (l) é a função implementada pela camada l e temos três camadas na

rede, podemos escrever f(x) = f (3)(f (2)(f (1)(x))).
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Figura 3: Arquitetura de uma Rede Neural

Além das redes feedfowards, existem redes neurais de variados tipos: convolucionais

(CNN), Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNN), entre

outras, as quais fogem do escopo deste trabalho. As RNAs podem ser utilizadas para

resolver problemas de aprendizado supervisionado, não-supervisionado e como parte da

solução de aprendizado por reforço, como detalhado nas seções 3.4.4.3 e 3.4.5.1.

Na próxima seção os detalhes do mecanismo de aprendizado de RNAs são abordados.
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3.2.1.2 Aprendizagem

De maneira geral, uma rede neural que mapeia uma entrada x para uma saída y tem

como objetivo aproximar uma função y = f ∗(x). A saída da RNA pode ser escrita com um

conjunto de parâmetros θ : ŷ = f(x; θ), e o objetivo da etapa de aprendizado é encontrar

o conjunto de parâmetros θ que melhor aproxima f ∗(x). Esse objetivo pode ser traduzido

como a minimização de uma função de perda (ou função de custo, loss function em inglês)

L(x, y, θ), que fornece uma medida da diferença entre f(x, θ) e f ∗(x).

Um exemplo recorrente utilizado como função de custo é o erro quadrático médio

(EQM, ou MSE em inglês):

L(x, y, θ) = (y − f(x, y, θ)2) . (3.1)

Entretanto, a avaliação do modelo é realizada geralmente através da esperança da

função de custo afim de avaliar o melhor fit de um conjunto de dados com o modelo.

Dessa maneira, define-se a função de custo como sendo a esperança matemática da perda:

J(θ) = E[L(x, y, θ)] . (3.2)

A RNA “aprende” a aproximar-se de f ∗(x) atualizando seus parâmetros θ, geralmente

utilizando o método de otimização chamado gradiente descendente. Tal método atualiza

θ gradualmente na direção inversa do gradiente da função de custo em relação à θ, para

buscar a minimização de tal custo.

θ ← θ − ε∇J(θ) . (3.3)

Existem também métodos derivados do gradiente descendente como o método de Adam

(15), o qual é utilizado posteriormente nesse trabalho.

Esse método pode ser aplicado sem perda de generalidade em casos onde a função

y = f ∗(x) não é conhecida, mas é conhecida uma função custo, ou função objetivo, a qual

é função dos estados e deseja-se minimizar. Detalhes sobre o processo de aprendizagem

por redes neurais utilizando APR são apresentados nas seções 3.4.4.3 e 3.4.5.1.
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3.3 Processos de Markov

3.3.1 Cadeias de Markov

Os processos de Markov descrevem processos estocásticos caracterizados pela propri-

edade markoviana: “O futuro é independente do passado dado o presente”. Os processos

de Markov são utilizados para descrever modelos estocásticos de transições de estados em

que a probabilidade de transição de um estado presente para um estado futuro só depende

do estado presente. Tem-se então:

P (St+1 | St) = P (St+1 | S1, S2, S3, . . . , St), (3.4)

onde P (St+1 | St) representa a probabilidade de transição do St para o estado St+1. A

propriedade markoviana diz então que um estado St captura toda informação relevante

do histórico de estados anteriores (S1, S2, ..., St−1) e é suficiente para determinar a proba-

bilidade de transição para o próximo estado St+1. Um processo de Markov (ou cadeia de

Markov) é então definido pela dupla < S,P >, onde:

• S é o conjunto de estados possíveis;

• P é a matriz de transição de estados, onde Pss′ = P (St+1 = s′ | St = s).

A matriz de transição de Markov para n estados possíveis é definida como:

P =


P11 P12 . . . P1n

...

Pn1 Pn2 ... Pnn

 . (3.5)

3.3.2 Processos de Recompensa de Markov

Por extensão, um Processo de Recompensa de Markov (PRM) é um processo marko-

viano onde as transições de estados estão associadas à uma recompensa R. Tal processo

é definido então pela quádrupla < S,P,R, γ >, onde.

• S, P são como descritos anteriormente (vide seção 3.3.1);

• R é a função de recompensa, Rs = E[Rt + 1 | St = s];

• γ ∈ [0, 1] é um fator de desconto.
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Um PRM visa avaliar um conjunto de transições segundo uma métrica de recompensas

para cada transição. Para tanto, uma função conhecida como retorno (Gt), avalia o

conjunto de recompensas para cada etapa de transição:

Gt =
∞∑
k=0

γkRt+k+1 . (3.6)

O valor de γ pondera as recompensas futuras em uma avaliação no presente, ou seja a

recompensa R recebida na (k+1)-ésima transição tem valor γkR. Ele garante a conver-

gência de recompensas acumuladas em processos que possuem horizonte infinito (não tem

fim previsto). De uma forma geral, se γ é próximo de 1 temos uma avaliação ponderada

no futuro muito longo, se γ é próximo de 0 temos avaliação pautada no futuro muito

próximo.

Cada estado de uma cadeia de Markov associada a um PRM é associado a uma função

de valor de estados V (s) que dá o valor de longo-prazo do estado, e é definida por:

V (s) = E[Gt | St = s] . (3.7)

O valor de V (s) pode pode ser reescrito como função da recompensa imediata e da re-

compensa futura:

V (s) = E[Rt+1 + γV (St+1) | St = s] . (3.8)

Como a transição de estados está associada à uma probabilidade de transição, podemos

reescrever a função de valor como se segue:

V (s) = Rs + γ
∑
s′∈S

Pss′V (s′) . (3.9)

A figura a seguir ilustra essa transição a recompensa associada e a função de valor

correspondente.

v(s) ← s

s′

r

v(s′) ← s′

Figura 4: Representação de um PRM

A equação de Bellman é utilizada para definir o valor de V(s) associados para todos

os estados de uma cadeia markoviana de um PRM:

v = R + γPv . (3.10)
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A equação pode ser resolvida no caso de PRM, sendo definida como:

v = (I − γP )−1R . (3.11)

3.3.3 Processo de Decisão de Markov

Um processo de decisão de Markov (PDM) é um processo de controle estocástico em

tempo discreto. Ele fornece uma estrutura matemática para modelar a tomada de decisões

em situações em que os resultados são parcialmente aleatórios.

PDMs são utilizados na modelagem e formulação de problemas de APR onde o am-

biente é totalmente observável. PDMs são uma extensão de um PRM onde as transições

estão associadas à ações tomadas antes da transição. Um Processo de Decisão de Markov

(PDM) é definido como a quíntupla < S,A,P,R, γ >, onde:

• S é o conjunto de estados possíveis;

• A é o conjunto de ações que o agente pode tomar;

• P é a probabilidade de transição de estado p(s, a, s′);

• R é a recompensa recebida pelo agente, definida pela função r(s, a) : S× A→ R;

• γ é o fator de desconto.

Um processo de decisão de Markov possui a propriedade markoviana, ou seja todas as

transições de estado dependem somente do estado atual e da ação tomada pelo agente,

ou seja o processo não possui memória (vide seção 3.3.1). No escopo de um PDM, temos

então:

P (st+1 | st, at) = P (st+1 | s1, s2, . . . , st, a1, a2, ..., at) . (3.12)

O objetivo é escolher uma política π que maximize algumas funções cumulativas das

recompensas aleatórias, tipicamente uma função Gt que computa a soma de recompensas

esperada em um horizonte potencialmente infinito. Uma política π é uma distribuição de

ações realizadas para um dado estado:

π(a | s) = P (At = s | St = s) . (3.13)

Uma política define totalmente o comportamento do Agente em um determinado ambi-

ente.
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Dado um PDMM = < S,A,P,R, γ > e uma política π, a sequência de estados S é um

processo de Markov em< S,Pπ >, e a sequência de estados e recompensas< S,Pπ,Rπ, γ >

define um PRM. Onde

P π
ss′ =

∑
a∈A

π(a)P a
ss′ , (3.14)

Rπ
s =

∑
a∈A

π(a)Ra
s . (3.15)

No caso do PDM, a função de valor, V (s) apresentada na seção anterior, é redefinida

como sendo a esperança do retorno Gt começada no estado s e seguindo a política π:

Vπ(s) = Eπ[Gt | St = s] . (3.16)

Uma nova função que avalia as ações tomadas em um determinado é definida, a função

de valor da ação Qπ(s, a) é a esperança dos retornos começando no estado s e realizando

a ação a, quando seguindo a política π:

Qπ(s, a) = Eπ[Gt | St = s, At = a] . (3.17)

Ambas as funções de valor da ação e a de valor do estado podem ser reescritas de forma

recursiva, como foi feito na seção anterior:

Vπ(s) = Eπ[Rt+1 + γVπ(St+1) | St = s] , (3.18)

Qπ(s, a) = Eπ[Rt+1 + γQπ(St+1, At+1) | St = s, At = a] . (3.19)

As equações de Bellman podem ser reescritas para cada uma das funções, e representam

o valor para as funções para um estado genérico s. As figuras a seguir ilustram o processo

para o cálculo das equações de Bellman. Na figura da esquerda, o valor de Vπ é associado

à probabilidade da tomada de uma ação a que é função de uma distribuição de π(a | s).
Na figura da direita, o valor de Qπ(s, a) é dependente da recompensa imediata r e da

função de valor associada ao novo estado de transição, vπ(s′).

vπ(s) ← s

qπ(s, a) ← a

qπ(s, a) ← s, a

vπ(s′) ← s′

r

Figura 5: Representação de um PDM, à esquerda, a dependência do valor de Vπ , à direita,
a dependência do valor de Qπ(s, a).
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Em síntese tem-se que:

Vπ(s) =
∑
a∈A

π(a | s)Qπ(s, a) , (3.20)

Qπ(s, a) = Ra
s + γ

∑
s′∈S

P a
ss′Vπ(s′) . (3.21)

Usando as duas equações anteriores pode-se escrever as funções de valor de estados e de

valor de ações de forma recursiva:

Vπ(s) =
∑
a∈A

π(a | s)(Ra
s + γ

∑
s′∈S

P a
ss′Vπ(s′)) , (3.22)

Qπ(s, a) = Ra
s + γ

∑
s′∈S

P a
ss′

∑
a′∈A

π(a′ | s′)Qπ(s′, a′) . (3.23)

Pode-se então definir que a função de valor de estados e de ações ótima é aquelas cujos

valores de V∗(s) e Q∗(s), respectivamente, são máximos sobre todas as políticas:

V∗(s) = max
π

Vπ(s) , (3.24)

Q∗(s, a) = max
π

Qπ(s, a) . (3.25)

Toda política ótima alcança a melhor performance em termos das duas funções de valores.

E a busca pela política ótima é o que define a motivação da aprendizagem, pois não existe

uma solução geral para a equação de Bellman, e a maioria dos problemas é solucionado

por soluções iterativas como nos algoritmos de Iteração de Valor, Iteração de Política,

Q-learning e SARSA.

3.4 Aprendizagem por Reforço

A Aprendizagem por Reforço (APR) tem como objetivo geral ensinar a realização

de uma tarefa a um Agente por meio de decisões sequenciais tomadas por ele (Sutton e

Barto(16)). A cada iteração, o agente observa um estado (s ∈ S) que o Ambiente fornece,

toma uma ação (a ∈ A) nesse Ambiente que causa uma transição desse estado para um

outro (s′ ∈ S) e recebe uma Recompensa (r ∈ R) em virtude dessa ação.

Dessa maneira, quando os problemas de APR são formulados com probabilidades de

transição bem definidas, eles constituem um PDM, que se baseia na quíntupla

< S,A,P,R, γ > (cf. item 3.3.3).
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Ambiente

Agente

açãoestado,
recompensa

Figura 6: Cenário geral de um problema de APR

3.4.1 Objetivo principal da APR

Dada a estrutura do problema, o objetivo dos algoritmos de APR é encontrar políticas

ótimas que maximizem a recompensa acumulada. Essas políticas definem a ação que o

agente deve tomar dado o estado que ele se encontra (π(s) : S → A). As recompensas

dadas pelo ambiente servem para moldar o comportamento do agente, então a simples

concepção das recompensas já constitui sozinha um problema complexo a ser resolvido, e

diversas heurísticas podem ser usadas para definí-las, pois a política ótima a ser encontrada

pelo agente depende fortemente delas.

Como mostrado na seção anterior, o PDM possui métricas de valor de estados e de

ações, que traduzem a esperança da recompensa seguindo certa política. Ora, encontrar

a política ótima π∗ pode se resumir então a encontrar a política que maximize tais mé-

tricas. Quando tem-se o conhecimento completo do PDM, inclusive das probabilidades

de transição de estados (ou se ela é determinística), pode-se aplicar métodos de Pro-

gramação Dinâmica para encontrar π∗. Outra opção são os métodos que aproximam a

função Qπ durante a aprendizagem, que pode ser usada posteriormente para definir a

política, escolhendo-se sempre a ação que maximiza Q no estado atual. Métodos bastante

utilizados e que tem isso como base são o Q-learning e suas variantes.

3.4.2 Programação Dinâmica

Quando tem-se um modelo definido que descreve o comportamento do ambiente como

um PDM (geralmente suposto finito) e o conhecimento das probabilidades de transição de

estados, existe uma coleção de algoritmos que podem ser usados para encontrar políticas

ótimas, a qual é chamada de Programação Dinâmica (PD). Sua aplicação, no entanto, é

limitada em APR dada sua premissa de um modelo descritivo perfeito do ambiente, e seu

custo computacional elevado (16).

A PD, e mesmo a APR em geral, utiliza as funções de valor (equações 3.16 e 3.17) para
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organizar e estruturar a busca por políticas melhores. Isto ocorre pois ao encontrar-se as

funções de valor ótimas - equações 3.24 e 3.25 - a política ótima π∗ também é encontrada:

π∗(s) = arg max
π

(Vπ(s)), ∀s ∈ S. (3.26)

3.4.2.1 Avaliação de Política

Primeiramente considera-se o problema de computar a função de valor do estado

Vπ para uma política arbitrária π. Toma-se então a equação 3.22. Se a dinâmica do

ambiente é conhecida, isso quer dizer que Ra
s e P a

ss′ são conhecidos. Portanto, encontrar

Vπ se resume a resolver um sistema de equações lineares com o número de equações e

de incógnitas iguais ao número de estados. Porém, o número de estados frequentemente

é elevado, o que torna inviável a resolução desse sistema. Prefere-se então uma solução

iterativa para esse problema, a qual aproveita a equação 3.22 para atualizar a estimativa

da função de valor do estado. Tem-se então:

Vk+1(s)
.
= Eπ[Rt+1 + γVk(St+1) | St = s]

=
∑
a∈A

π(a | s)(Ra
s + γ

∑
s′∈S

P a
ss′Vk(s

′)) .
(3.27)

Mostra-se que Vk → Vπ para k → ∞ com as mesmas condições que garantem a

existência de Vπ (16). Para obter-se a estimação, deve-se então definir um limite de

precisão θ como critério de parada do algoritmo iterativo de Avaliação da Política mostrado

a seguir:

Algoritmo 1: Avaliação de Política iterativa (16)
Entrada: π, a política a ser avaliada

Dados: um pequeno limite θ > 0 delimitando a precisão da estimação

Saída: V , estimação de Vπ
Inicializar V (s) arbitrariamente para todos estados, exceto o terminal onde V = 0

repita
∆← 0

para cada s ∈ S faça
v ← V (s)

V (s)←
∑

a π(a|s)(Ra
s + γ

∑
s′ P

a
ss′V (s′))

∆← max(∆, |v − V (s)|)
fim

até ∆ < θ;
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3.4.2.2 Iteração de Política

Uma vez obtida a estimação de Vπ, e sabendo-se as probabilidades de transição de

estados, a política atual pode ser melhorada simplesmente buscando-se as ações que levam

a estados s com o maior Vπ(s) possível. O algoritmo que se aproveita dessa estratégia

para melhorar a política é mostrado abaixo:

Algoritmo 2: Iteração de Política (usando avaliação de política iterativa) (16)
Saída: π ≈ π∗ e V ≈ V∗

Inicialização: V (s) ∈ R e π(s) ∈ A arbitrariamente ∀s ∈ S

repita
1. Avaliação de Política:

repita
∆← 0

para cada s ∈ S faça
v ← V (s)

V (s)←
∑

a π(a|s)(Ra
s + γ

∑
s′ P

a
ss′V (s′))

∆← max(∆, |v − V (s)|)
fim

até ∆ < θ;

2. Melhorar Política:

politica_estável← verdadeiro

para cada s ∈ S faça
última_acão← π(s)

π(s)← arg maxa(R
a
s + γ

∑
s′ P

a
ss′V (s′))

Se última_acão 6= π(s), então politica_estável← falso

fim

até politica_estável;

3.4.2.3 Iteração de Valor

A Iteração de Política, apesar de convergir para a política ótima no limite, pode

ser demasiadamente custosa em processamento, uma vez que cada iteração realiza uma

Avaliação de Política, o que acaba tornando o algoritmo ineficiente em certos casos. Porém,

se ao invés de se aguardar a convergência da Avaliação de Política, para-se o algoritmo

nas primeiras iterações, pode-se haver uma redução significativa no custo computacional

do algoritmo, sem perder a garantia de convergência da Iteração de Política (16). É o caso

da Iteração de Valor, onde para-se a Avaliação da Política após apenas uma atualização
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de cada estado. O algoritmo detalhado é mostrado a seguir:

Algoritmo 3: Iteração de Valor (16)
Dados: um pequeno limite θ > 0 delimitando a precisão da estimação

Saída: π ≈ π∗

Inicializar V (s) arbitrariamente para todos estados, exceto o terminal onde V = 0

repita
∆← 0

para cada s ∈ S faça
v ← V (s)

V (s)← maxa(R
a
s + γ

∑
s′ P

a
ss′V (s′))

∆← max(∆, |v − V (s)|)
fim

até ∆ < θ;

Retornar π(s) = arg maxa(R
a
s + γ

∑
s′ P

a
ss′V (s′))

3.4.3 Métodos de Monte Carlo

Os métodos de Monte Carlo (MC)(16), contrariamente aos de Programação Dinâmica,

não assumem conhecimento completo do ambiente (são ditos Model-Free), e requerem so-

mente amostras experimentais de sequências de estados, ações e recompensas de interações

com o ambiente (simuladas ou reais). Tais métodos são interessantes pois não requerem

conhecimento prévio da dinâmica do ambiente, porém conseguem ainda assim alcançar

políticas ótimas. Além disso, aprender a partir de experiências simuladas (amostras de

transições) permite o emprego de tais métodos em uma vasta gama de situações onde gerar

as distribuições completas do ambiente de forma explícita é impossível ou extremamente

complexo.

Tais métodos resolvem o problema de APR baseado em médias de amostras de retorno.

As tarefas consideradas para os métodos de Monte Carlo são episódicas (a experiência

é dividida em episódios e todos episódios eventualmente terminam independentemente

das ações selecionadas), para assegurar que retornos bem definidos são disponíveis. Os

estimadores de valor e a política são atualizados então somente no final dos episódios.

Portanto, os métodos MC são offline, incrementando a cada episódio, ao contrário dos

métodos online, que atualizam-se a cada passo da simulação.

Para aprender, utiliza-se uma adaptação da generalização da Iteração de Política. Ao

contrário da PD, que usa o conhecimento do PDM para computar funções de valor, MC

utiliza amostras de retorno do PDM para aprender as funções de valor. Como descrito
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na seção de Programação Dinâmica (3.4.2), considera-se primeiramente o problema da

Avaliação de Política (computando-se Vπ e Qπ para uma política arbitrária e fixa π), para

posteriormente aprimorar a política e utilizá-la no problema de controle. Cada uma dessas

ideias extraídas da PD são estendidas para o caso onde somente amostras de experiência

estão disponíveis (Monte Carlo).

3.4.4 Aprendizagem por Diferenças Temporais

A aprendizagem por Diferenças Temporais (DT)(16) combina ideias dos métodos de

Monte Carlo com Programação Dinâmica. Os métodos de DT aprendem diretamente da

simples experiência sem um modelo da dinâmica do ambiente, como os métodos de MC.

Porém, assim como na PD, a atualização dos estimadores em DT é feita em parte baseada

em outros estimadores aprendidos (online), sem esperar um resultado final episódico.

Alguns métodos clássicos de DT são a Previsão por Diferenças Temporais (TD(0), TD(λ),

...), SARSA e Q-learning. Este último é descrito em detalhes a seguir.

3.4.4.1 Q-learning

O algoritmo Q-learning (17) é um algoritmo de controle por DT dito off-policy, ou

seja, que não segue a política sendo otimizada na fase de aprendizagem (possui política

própria durante essa fase). A fórmula de atualização da estimação da função de valor de

ações é a seguinte:

Q(St, At) = Q(St, At) + α[Rt+1 + γmax
a
Q(St+1, a)−Q(St, At)]. (3.28)

Prova-se que neste caso, a função de valor de ações aprendida, Q, aproxima diretamente

Q∗, a função de valor de ações ótima, independentemente da política sendo seguida (16).

A condição requerida para essa convergência é a de que o valor de todos os pares de

estado-ação continue a ser atualizado durante a aprendizagem. Por isso, a política tem

um efeito que determina quais pares são visitados e atualizados. Geralmente utiliza-se

uma política chamada ε-greedy, que com probabilidade ε escolhe aleatoriamente uma

ação a ser tomada, e com probabilidade 1 − ε escolhe a ação que maximiza a função

de valor de ações ("ambiciosa"). Esta política equilibra exploração do conhecimento já

adquirido (representado pela função de valor) e experimentação de novas ações (escolhidas
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aleatoriamente). O algoritmo detalhado de Q-learning é mostrado abaixo:

Algoritmo 4: Q-learning (Controle por DT off-policy) (16)
Dados: taxa de aprendizagem α ∈ [0, 1], ε ∈]0, 1] pequeno

Saída: π ≈ π∗

Inicializar Q(s, a) arbitrariamente para todos estados e ações, exceto para o estado

terminal onde Q = 0

para cada episódio faça
Inicializar S

para cada passo do episódio faça
Escolher A no estado S usando política derivada de Q (p.ex. ε-greedy)

Tome a ação A, observe R, S ′

Q(S,A)← Q(S,A) + α[R + γmaxaQ(S ′, a)−Q(S,A)]

S ← S ′

fim

fim

Retornar π(s) = arg maxaQ(s, a)

O algoritmo mostrado funciona muito bem quando tem-se estados e ações discretos de

dimensão não muito elevada, utilizando-se Q tabular. Em casos contínuos, existe ainda

a possibilidade de discretizar estados e ações. No entanto, conforme a quantidade de

estados e ações aumenta, a complexidade do algoritmo também cresce. A atualização de

Q pela visita a todos pares de estado-ação torna-se custosa, e a convergência do algoritmo,

lenta. Além disso, quando tem-se estados com várias dimensões, o tamanho da tabela

que armazena Q torna-se excessivamente grande, e o problema torna-se difícil de resolver.

Possíveis soluções para tais problemas utilizando princípios do Q-learning são mostradas

a seguir (Q-learning aproximado e Deep Q Network).

3.4.4.2 Q-learning aproximado

O Q-learning aproximado(16) utiliza uma aproximação de função para a função de

valor de ações Q. Ao invés de se utilizar uma tabela para armazená-la, aproxima-se Q

por uma forma funcional parametrizada com vetor de pesos w ∈ Rd. Denota-se tal apro-

ximação por Q̂(s, a,w) ≈ Qπ(s, a). Essa aproximação pode ser a mais variada possível,

podendo ser:

• um modelo de regressão linear, onde w denomina os pesos da função linear;

• uma árvore de decisão, onde w define os nós e valores das folhas;
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• ou até mesmo uma RNA multi-camadas (vide seção 3.2.1), onde w é o vetor dos

pesos dos neurônios em todas as camadas.

Tipicamente, o número de pesos (dimensão de w) é bem menor que o número de estados:

d � |S|. Portanto, mudar um peso afeta o valor estimado de vários estados, o que por

consequência, faz com que a atualização de um estado seja generalizada pelo modelo e

afete o valor de vários outros. Tal generalização é interessante pois torna o aprendizado

potencialmente mais poderoso porém também mais difícil de controlar e entender. Outro

aspecto interessante é que tais métodos de APR permitem sua aplicação para problemas

parcialmente observáveis (nos quais o estado completo não é disponível para o agente).

3.4.4.3 Deep Q Network

Deep Q Network (DQN) é uma arquitetura de APR proposta por Mnih et al.(18)

para aprender a jogar 49 jogos clássicos de Atari 2600, utilizando uma observação do

estado pelo agente por meio somente da visualização do jogo (pixels que constituem a tela

do jogo). Para tal, os autores aproximam a função de valor de ação ótima por meio de

uma Rede Neural Convolucional (CNN) que recebe a observação do estado como entrada

e retorna os valores de ação como saída. Os autores propõem também uma rotina de

treinamento por replay de experiência, ou seja, pegam amostras aleatórias de um conjunto

de passos experimentais para utilizar no treinamento da RNA, eliminando a correlação na

sequência das observações (que é prejudicial para o treinamento da RNA) e suavizando as

mudanças na distribuição de dados. Portanto, durante a aprendizagem, as atualizações do

Q-learning são feitas com amostras (ou minibatches) de experiência (s, a, r, s′), retirados

uniformemente de maneira aleatória das amostras experimentais armazenadas em U(D)

(replay). A função custo utilizada na atualização dos pesos θi da Rede Q (Q Network,

em inglês) na i-ésima iteração do algoritmo é a seguinte:

Li(θi) = E(s,a,r,s′)∼U(D)

[(
r + γmax

a′
Q(s′, a′; θ−i )−Q(s, a; θi)

)2]
; (3.29)

onde:

• γ é o fator de desconto;

• θi são os parâmetros da Rede Q na i-ésima iteração;

• θ−i são os parâmetros da RNA utilizada para computar o alvo - maxa′ Q(s′, a′; θ−i ) -

na i-ésima iteração.
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O treinamento da RNA é feito com o método de Adam (15). Os parâmetros da RNA que

computa o alvo (θ−i ) são somente atualizados com os parâmetros da Rede Q (θi) a cada

C passos, sendo fixos entre atualizações individuais, o que é denominado de Atualização

Dura do Modelo Alvo (Hard Target Model Update, em inglês). Outra opção que pode

ser utilizada, a Atualização Mole do Modelo Alvo (Soft Target Model Update) atualiza

os parâmetros a cada iteração do algoritmo, por meio de uma atualização que pondera a

importância dada ao modelo anterior e o novo segundo a equação a seguir (C é o parâmetro

que define essa ponderação):

θ−i = C × θ−i + (1− C)× θi . (3.30)

Mesmo se a DQN atinge bons resultados em sistemas com dimensões elevadas, o

espaço de ações do método ainda é discreto. No entanto, muitas tarefas de interesse,

especialmente de controle (inclusive a tarefa analisada neste trabalho), possuem espaço

de ações contínuo. Se a discretização de tal espaço de ações é muito fina, o espaço de ações

torna-se muito grande e a complexidade do problema aumenta, dificultando a convergência

do método.

O interesse da aplicação desse algoritmo para a esse trabalho é que ele pode ser

utilizado para a construção de uma política de controle de leme e de propulsão discreta,

utilizando uma aproximação para a função com relativamente poucos parâmetros da rede

neural. A contrapartida desse método é que ele deve ser aplicado em conjunto com a

discretização das ações de leme e propulsão.

3.4.5 Gradiente de Política

Os métodos de Gradiente de Política (GP) são diferentes dos expostos anteriormente

na medida em que eles não utilizam mais uma estimativa da função de valor de ações

para constituir uma política (selecionando-se ações que maximizem a função). Ao invés

disso, tais métodos aprendem uma política parametrizada que pode selecionar ações sem

consultar uma função de valor. No entanto, uma função de valor pode ainda ser usada

para aprender o parâmetro da política (16). Similarmente ao procedimento de gradiente

descendente descrito na seção 3.2.1.2, que fala sobre o processo de otimização das RNAs, os

métodos de GP realizam o gradiente ascendente, utilizando uma métrica de performance

ao invés de custo. Por isso, para maximizar o desempenho, sobe-se o gradiente ao invés

de descê-lo, como é feito com o custo. Analogamente à equação 3.3, o GP segue então a
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seguinte regra geral de atualização (com J(θ) sendo agora uma medida de performance):

θ ← θ + ε∇J(θ) . (3.31)

Costuma-se denominar a arquitetura ator-crítico como métodos que aprendem aproxima-

ções para ambas a política e função de valor. Ator refere-se à política aprendida, enquanto

crítico é uma referência à função de valor estimada, geralmente uma função de valor de

estado.

3.4.5.1 Deep Deterministic Policy Gradient

O método Deep Deterministic Policy Gradient (DDPG), proposto por Lillicrap et

al.(19), é comumente aplicado para ambientes em que o espaço de ações é contínuo, como

é o caso do problema de controle de ações de leme e propulsão em navegação.

Tal método apoia-se na arquitetura ator-crítico, a qual é usado para representar a

função de política independentemente da função de valor. A estrutura da função de

política é conhecida como o ator e a estrutura da função de valor é referida como crítico.

O ator produz uma ação, dado o estado atual do ambiente, e o crítico produz um sinal

de erro DT (Diferença Temporal), dado o estado e a recompensa resultante. A saída do

crítico impulsiona a aprendizagem tanto no ator quanto no crítico. O diagrama a seguir

ilustra essa estrutura.

Função de
Valor

Estado Ação

Ator

erro DT

Crítico

Política

Ambiente

Figura 7: Diagrama ator-crítico

No caso do DDPG utilizamos um algoritmo de política determinística, ou seja,

a = µθ(st|θµ) (3.32)

ao invés de πθ(a|s) = P (a|s, θ) como nos casos estocásticos anteriores. Dessa forma o
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DDPG o gradiente é calculado apenas sobre o espaço de ações, o que exige um número

de amostras menor que no caso estocástico. Entretanto uma política determinística não

explora plenamente o espaço de estados, dessa forma, para superar essa limitação, utiliza-

se a adição de um processo de ruído Nt. Dessa forma tem-se:

a = µθ(st|θµ) +Nt . (3.33)

Um crítico é usado para avaliar a política estimada pelo ator segundo o erro de DT:

yi = rt+1 + γQ(st+1, at+1)−Q(st, at) . (3.34)

Assim como no caso do DQN é utilizado a técnica de replay de experiências para tirar

a correlação das sequências de observações.

Atualizar diretamente o seu ator e os pesos críticos da rede neural com os gradientes

obtidos a partir do sinal de erro de DT calculado faz com que seu algoritmo de aprendizado

divirja (ou seja, não aprenda). Para contornar esse problema utiliza-se um conjunto de

redes-alvo (target, em inglês) para gerar os alvos para o cálculo de erro de DT o qual

regulariza o algoritmo de aprendizado e aumenta a estabilidade da solução, similarmente

como é feito para o método DQN. As equações para o alvo DT yi e a função de perda

para a rede do crítico são as seguintes, respectivamente:

yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′

) , (3.35)

L =
1

N

∑
i

(yi −Q(si, ai|θQ)2) . (3.36)

Nessa equação, um minibatch de tamanho N foi amostrado a partir do buffer de

reprodução, com i o índice referente à amostra. O alvo para o cálculo do erro de DT, yi,

é calculado a partir da soma da recompensa imediata e das saídas das redes-alvo do ator

e do crítico, tendo pesos θµ′ e θQ′ respectivamente. Então, a saída do crítico pode ser

computada como sendo Q(si, ai|θQ).
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O pseudo-código que define o DDPG é demonstrado a seguir.

Algoritmo 5: Deep Deterministic Policy Gradient (19)
Inicializar τ << 1

Inicializar a rede do crítico Q(s, a|θQ) e a rede do ator µ(s|θµ) arbitrariamente com

pesos θQ e θµ

para cada episódio = 1, M faça
Inicializar o processo aleatório de exploração Nt
Receber o estado inicial de observação s1
para cada iteração t= 1, T faça

Escolher at = µθ(st|θµ) +Nt usando política de exploração e ruído.

Tome a ação at, observe rt, st+1

Armazenar a transição (st, at, rt, st+1) no minibatch Bs

Extrair de Bt uma amostra aleatória de contendo N transições

(si, ai, ri, si+1)

Defina: yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′

)

Atualizar o crítico minimizando L = 1
N

∑
i(yi −Q(si, ai|θQ)2)

Atualizar a política do ator utilizando o gradiente da amostra de política:

∇θµJ ≈ Est̃ρβ [∇aQ(s, a)|s=st,a=µ(st) · ∇θµµ(s)|s=st ]
Atualizar as redes "targets":

θQ
′ ← θQ + (1− τ)θQ

′

θµ
′ ← θµ + (1− τ)θµ

′

fim

fim

O interesse do algoritmo de DDPG para esse trabalho reside no fato de que ele pode

ser utilizado para construir uma política de decisão contínua, a qual pode ser utilizada

para a construção de uma lei de controle de propulsão e leme.

3.5 Transferência de Aprendizado

A Transferência de Aprendizado (TA), ou Transfer Learning (em inglês), é uma técnica

de Aprendizado de Máquina onde um modelo já treinado em uma tarefa é reaproveitado

para uma outra tarefa relacionada(20). A técnica é muito útil em casos onde o treinamento

dos modelos do zero é longo e demanda muitos recursos, como por exemplo no treinamento

de Redes Neurais Convolucionais para reconhecimento de imagens, pois muitas vezes é

possível reduzir drasticamente o número de iterações da fase de treino simplesmente ao
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utilizar-se o modelo já treinado para aprender a nova tarefa.

Na Aprendizagem por Reforço, a TA também se preocupa com acelerar o processo

de aprendizagem, uma vez que os agentes de APR podem demorar muitos episódios re-

alizando exploração aleatória antes de conseguir desenvolver uma política razoável. A

aplicação da TA torna-se então interessante para problemas onde os episódios são demo-

rados (simulações complexas e custosas), acelerando-se assim consideravelmente a apren-

dizagem da política. Duas das principais formas de transferir o aprendizado em APR são

mostradas a seguir.

3.5.1 Métodos de Ponto Inicial

Os Métodos de Ponto Inicial (MPI) utilizam um modelo já aprendido como solução

inicial do aprendizado da nova tarefa. Tal solução é relativamente simples visto que o

modelo se atualiza para a nova tarefa através da experiência (treino) por meio da própria

APR. Comparado à configuração inicial aleatória ou em zero que é geralmente utilizada

pelos algoritmos de APR, tais métodos podem iniciar a aprendizagem em um ponto muito

mais próximo de uma boa solução para o novo problema.

Existem algumas maneiras de aproveitar o modelo aprendido como solução inicial,

porém em geral o algoritmo de APR utilizado é o mesmo em ambos os problemas (da

solução encontrada e o que se quer resolver). Algumas abordagens podem requerer um

mapeamento dos estados e ações entre as tarefas, quando há diferenças entre os ambientes

analisados.

3.5.2 Métodos de Imitação

Os Métodos de Imitação induzem escolhas de políticas aprendidas durante o apren-

dizado de outras tarefas. Apesar de não causar mudanças diretas na solução encontrada

para a tarefa a aprender como os MPI, a Imitação afeta a aprendizagem produzindo dife-

rentes atualizações na política ou função de valor. As decisões por Imitação podem levar

o agente mais rapidamente a áreas mais promissoras do Ambiente se comparado à explo-

ração aleatória geralmente realizada pelos algoritmos de APR. Uma opção de Método de

Imitação, por exemplo, substitui as ações aleatórias de uma política ε-greedy pela escolha

da política aproveitada.
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4 MODELO DINÂMICO E SIMULAÇÃO

Neste capítulo descreve-se brevemente a dinâmica do navio considerado no estudo e

o Simulador TPN, para o qual propõe-se o controle.

4.1 Dinâmica do navio

Nesta seção apresenta-se um modelo dinâmico simplificado que descreve o movimento

de navegação de uma embarcação. A análise desse modelo é essencial para a compreensão

dos resultados obtidos pelo simulador numérico, serve de base teórica para validação da

coerência dos resultados obtidos pela APR, e é relevante para a dedução de parâmetros

de design do algoritmo.

O modelo de navio apresentado possui 3 graus de liberdade, deve navegar no plano

horizontal, e tem como hipótese principal a de que o navio possui baixa velocidade de até

3m/s (hipótese coerente com a navegação em águas restritas). Um modelo mais detalhado

de navegação pode ser encontrado em (5) e em (21).

Seja um sistema de coordenadas fixo na terra OXY Z e um sistema de coordenadas

fixa no navio oxyz, com a origem o fixa no ponto central da seção média da quilha da

embarcação. O centro de gravidade G está à distância xG à frente do ponto o, ox é o eixo

longitudinal do navio direcionado para a proa, e oy é o eixo transversal, apontando para

o bombordo. O rumo da embarcação ψ define o ângulo entre os eixos de proa e OX. A

figura 9 apresenta um diagrama simplificado do navio e seus sistemas de coordenadas.

As 3 equações diferenciais que definem a dinâmica desse modelo são:

(M +M11)u̇− (M +M22)vr − (Mxg +M26)r
2 = Xext,

(M +M22)v̇ + (Mxg +M26)ṙ + (M +M11)ur = Yext,

(Iz +M66)ṙ + (Mxg +M26)(v̇ + ur) + (M11 −M22)uv = Next,

(4.1)

onde M é a massa do navio, Iz é o momento de inércia do navio, u e v são as velocidades
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O X

Y

o

x
y r

Figura 8: Diagrama do navio e seus sistemas de coordenadas

longitudinal e transversal, respectivamente, e r é a velocidade angular da guinada. Os

termos M11 e M22 são as massas adicionadas ao navio nas direções ox e oy, M66 é o

momento de inércia adicional do navio e M26 é a inércia acoplada adicional. Next é

o momento de Munks. O subscrito ext representa as cargas externas que podem ser

expressas em termos de diferentes fatores.

Xext é decomposto como sendo:

Xext = Xh +Xw +Xwv +Xp +Xtug +XM , (4.2)

onde Xh representa as forças hidrodinâmicas de não potencial, incluindo as forças de

manobra e corrente, Xw, Xwv representam as forças de vento e de onda, respectivamente

Xp representa os impulsores, forças de hélice e leme, finalmente, Xtug e XM representam

respectivamente a ação externa dos rebocadores e as forças devido a linhas de ancoragem.

Analogamente, podemos decompor Yext e Next, sem perda de generalidade.

No escopo desse trabalho o navio foi simulado em condições de canal, ou seja na

ausência de vento, ondas e corrente, e com forças de navegação e controle definidas apenas

pelas ações de hélice e leme (sem rebocadores e amarras), simplificando as forças externas

para as forças de impulsores e forças hidrodinâmicas de manobra e resistência (velocidade

de corrente nula):

Xext = Xh +Xp,

Yext = Yh + Yp,

Next = Nh +Np.

(4.3)

As equações físicas que representam os esforços hidrodinâmicos de Xh, Yh, eNh fogem

do escopo deste trabalho, mas podem ser encontradas nos trabalhos em detalhes em (21)

e (22).
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A força dinâmica do leme FL (a qual as forças externas de índice p são funções

dependentes), responsável pelo controle de guinada do navio é dada por:

FL(φ) = 0.5ρArCL(φ)V 2
r , (4.4)

onde ρ é a densidade da água, Ar é a área do leme, CL é um coeficiente adimensional, φ

o ângulo efetivo do leme e Vr a velocidade relativa de escoamento da água sobre no leme

(Figura 9). Como observado, as forças do leme dependem da velocidade de escoamento,

que está diretamente relacionada à rotação da hélice. Dessa forma, é intuitivo notar que

a embarcação possui um potencial de controle de leme proporcional à rotação da hélice.

Ou seja, as forças do leme são reduzidas quando o motor está inoperante.

u

v
Vr

Vrx

Vry

FL

φ

φ
.

Figura 9: Diagrama de forças de leme

Já a força de propulsão (empuxo) de um propulsor azimutal fixo é definida como

sendo:

Tp(JA) = ρn2
pD

4
pKT (JA), (4.5)

onde ρ é a densidade da água, np é a velocidade de rotação da hélice do propulsor, Dp é o

diâmetro da hélice e KT é a constante adimensional de torque do propulsor, que depende

do coeficiente de avanço JA e normalmente pode ser obtido através do gráfico KT versus

JA fornecido pelo fabricante do propulsor.

O detalhamento de como as funções externas de índice p são funções das forças de

leme e propulsão pode ser encontrado em (22).

4.2 Simulador TPN

O Centro de Simulação de Manobras TPN-USP é o maior Centro Brasileiro para

simulação de Manobras de Navios. Este centro é composto por seis simuladores, três

deles classificados como de missão completa (sistema imersivo com projeção virtual em
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270o). A figura 10 ilustra uma sala do centro de manobras do TPN.

Figura 10: TPN: Sala de manobras de navios

A simulação pode ser executada em modo de tempo real em uma ou várias cabines

simultaneamente (simulação de um ou vários pilotos). O simulador é usado para avaliação

de novos portos, operações, análise de risco, treinamento de pilotos e capitães. O mesmo

software de simulação também pode ser executado no modo de tempo rápido (fast-time)

para propósito de analisar a trajetória percorrida por embarcações pilotadas por contro-

ladores automáticos, situações nas quais não existe a necessidade de simulação em tempo

real.

O simulador pode ser resumido como um sistema de integração Runge-Kutta de 4a

ordem, que integra um conjunto de 6 equações diferenciais que regem a dinâmica do navio

em seus 6 graus de liberdade (X, Y, Z, rx, ry, rz).

O simulador é configurável através de um arquivo externo, o qual define as caracterís-

ticas do navio a ser pilotado tais como as matrizes de massa, matrizes de massa adicional,

dimensões espaciais, localização e tipo de atuadores, etc. O arquivo externo define tam-

bém as condições ambientais externas de navegação, tais como a presença e características

dos ventos, correntes, ondas, etc. Para um maior detalhamento da influência das forças

externas referir-se a (22) e para maior detalhamento das equações em 6 graus de liberdade

referir-se a (21).

Para este trabalho o navio considerado é conhecido como ANGRA, e cujas caracte-
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rísticas são detalhadas no apêndice A.1. O Navio apresenta apenas um leme azimutal

como superfície de controle, e um propulsor do tipo azimutal fixo de rotação variável.

As características do leme e do propulsor são descritas também nas seções A.4 e A.3,

respectivamente.

O simulador fast-time recebe como entrada os comandos de leme e de propulsão,

realiza a integração numérica nos 6 graus de liberdade e fornece como saída, a posição e

vetor de velocidades do do navio em relação ao ponto de origem fixo. Para este trabalho,

entretanto, como definido na seção 2.2.1, apenas a posição absoluta do navio (Xabs, Yabs),

a velocidade absoluta (Vx, Vy), o ângulo de aproamento (θ), e a velocidade angular (θ̇) são

extraídos do simulador.

Os parâmetros de entrada tem a forma vetorial do tipo AV = [Al, Ap], onde Al é o

comando adimensional de leme e Ap o comando adimensional de propulsão, de tal forma

que Al ∈ [−1, 1] e Ap ∈ [0, 1]. Tais parâmetros tem uma relação proporcional direta com

o ângulo de leme e a propulsão, de tal forma que:

Ap = 1→ Tp = Tmax
p ,

Ap = 0→ Tp = Tmin
p ,

Al = 1→ φL = φmax
L ,

Al = 0→ φL = 0 ,

Al = −1→ φL = φmin
L .

(4.6)

Os valores de Tmax
p , Tmin

p , φmax
L e φmin

L , são definidos nos apêndices A.3 e A.4.
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5 TRABALHOS RELACIONADOS

Nesta seção, os principais trabalhos que foram utilizados como base para elaboração

da solução proposta são apresentados, e os tópicos de maior relevância para elaboração

da solução são citados e descritos brevemente.

5.1 Ambiente de Simulação

Nos trabalhos de Ahmed e Hasegawa(4), o objetivo é controlar as ações de voo de

um helicóptero. Neste contexto, o ambiente é o espaço de estados do helicóptero durante

o voo. Para modelizar o ambiente, os autores utilizam uma etapa de identificação do

modelo através de um voo manual sensoreado. Em seguida utiliza-se uma rede neural

para parametrizar as transições de estados a partir dos dados coletados. Finalmente, um

agente é treinado utilizando o ambiente virtual (modelo parametrizado) e posteriormente

testado no ambiente físico real (voo).

No trabalho de Abbeel et al.(23), o objetivo foi controlar um helicóptero em voo

invertido. A metodologia para modelização do ambiente foi parecida - primeiramente,

modelizou-se o ambiente através de dados captados de um voo. Nesse caso, porém,

utilizou-se um modelo paramétrico físico na etapa de identificação, e os parâmetros do

modelo foram identificados a partir de uma regressão linear dos dados de voo. O ambiente

(modelo) foi então utilizado para o treinar o agente, que foi posteriormente validado em

voo.

Em Lau(24), busca-se controlar um simulador de corrida de carros a partir de uma

rede neural usando APR profunda e DDPG. Nesse caso o ambiente não necessita ser

identificado pois o próprio simulador é virtual e suficientemente rápido para realizar a

aprendizagem do algoritmo.

Finalmente, em Brockman et al.(25) propõe-se uma forma genérica para modelizar

ambientes virtuais utilizados em técnicas de aprendizado por reforço utilizando a bibli-
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oteca OpenAI gym. O objetivo é a padronização de conceitos relacionados à aplicação

de algoritmos de aprendizagem. Busca-se também o compartilhamento dos ambientes em

uma plataforma global para que diversos membros da comunidade OpenAI gym possam

facilmente aplicar e comparar técnicas de aprendizado, fomentando assim o desenvolvi-

mento de algoritmos eficientes para um determinado problema.

5.2 Design da recompensa

A definição da recompensa é um aspecto fundamental na APR, como relata (24),

diferentes funções de recompensa podem significar uma diferença substancial no número

de etapas necessárias para a convergência do algoritmo, seja ele de APR Profunda ou

Q-learning aproximado. Em (23) e em (7), propõe-se a aplicação de uma função de custo

semelhante à utilizada nos problemas de controle clássico utilizando LQR. Tal utilização

apresentou bons resultados em ambos os trabalhos. Para fins de convergência, entre-

tanto, como cita (24), recompensas com valores normalizados entre -1 e 1 tendem uma

convergência mais rápida para redes neurais em DQN E DDPG.

5.3 Redes Neurais e Hiper-parâmetros

Como demonstrado em (24), uma rede neural 2 camadas, utilizando o método de

DDPG, com a estrutura ator-crítico-target, e foi capaz de controlar a condução de um veí-

culo após 200 mil iterações. Para isso utilizou-se o método estocástico reversível Ornstein-

Uhlenbeck. Os comandos abordados eram do tipo contínuo em aceleração, freio e direção.

Observou-se como resultado final que o veículo seguia uma trajetória-guia com pequenas

oscilações de direção.

Já em Plappert(26) apresenta-se o controle de diversos ambientes de controle conti-

nuo e discreto estruturados utilizando os moldes definidos por (25). Nesse contexto, um

pêndulo invertido foi controlado utilizando o método DQN e uma rede neural de 3 cama-

das, em associação à uma discretização das ações para a formulação e usando replay de

experiência para garantir a convergência . A partir de (26) e de (24) foram coletados os

hiper-parâmetros para a definição da rede neural. Eles são detalhados na tabela a seguir.
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Tabela 1: Hiper-parâmetros para a definição da RNA

CartPole Pêndulo invertido Simulador Carro

Espaço de Estados Número: 4

Tipo: Contínuo

Número: 3

Tipo: Contínuo

Número: 8

Tipo: Contínuo

Espaço de Ações Número: 2

Tipo: Discreto

Número: 1

Tipo: Contínuo

Número:3

Tipo: Contínuo

Tipo de RNA DQN com Replay de

Experiência e RNA

Alvo

DDPG: Ator-Crítico,

Replay de Experiência

e RNA Alvo

DDPG: Ator-Crítico,

Replay de Experiência

e RNA Alvo

Arquitetura da RNA Sequencial,

Entrada: Estados

Camada 1: 16

Camada 2: 16

Camada 3: 16

Saída: Ação

Ator: Sequencial,

Entrada: Estados

Camada 1: 16

Camada 2: 16

Camada3: 16

Saída: Direção

Crítico: Sequen-

cial, Entrada: Ações,

Estados

Camada 1: 32

Camada 2: 32

Camada3: 32

Saída: Booleana

(dimensão = Ações)

Ator:Sequencial,

Entrada: Estados

Camada 1: 600

Camada 2: 300

Saída: Direção

Crítico:Sequencial,

Entrada: Ações,

Estados

Camada 1: 600

Camada 2: 300

Saída: Booleana

(dimensão = Ações)

Além disso, a partir de outros ambientes que podem ser encontrados em (26) observa-

se que para modelos em que o número de estados é elevado o número de neurônios por

camada é mais elevado. O número de camadas está associado ao número de decomposições

espaciais da entrada de uma rede, enquanto o número de neurônios está associado ao

número de permutações espaciais e ambos são configurados de acordo com a complexidade

da tarefa a ser resolvida.



56

6 SOLUÇÃO PROPOSTA

Este capítulo detalha a solução proposta, tanto no lado da simulação do sistema

dinâmico, quanto na parte da estruturação do problema de Aprendizagem por Reforço

6.1 Simulação para aprendizagem

Nesta seção os mecanismos utilizados de simulação para a elaboração da solução são

discutidos e os principais aspectos da solução são apresentados.

6.1.1 Simulador TPN: Uso e limitações

Como descrito no capitulo 4 o simulador TPN é um software para simulação de na-

vegação que já foi extensivamente validado, e que é usado como suporte para simulação

de manobras e para o aprendizado de novos pilotos. Para tanto o software apresenta uma

dinâmica complexa, que considera não só a dinâmica do navio em 6 graus de liberdade

como também as equações fluidodinâmicas na iteração navio-ambiente (vento, correntes)

e na iteração do propulsor e leme.

Se por um lado essa complexidade é essencial para a reprodução verossímil do com-

portamento do navio, por outro, ela impõe dificuldades para a aprendizagem por reforço.

Além disso o simulador do TPN se comunica com o ambiente de desenvolvimento em

python utilizando a interface simulador-python desenvolvida pela equipe do TPN e que

utiliza um protocolo local através de uma comunicação via soquetes. Tal arquitetura de

comunicação também impõe dificuldades para o aprendizado.

As dificuldades apresentadas pela complexidade do modelo e pela arquitetura de co-

municação são apresentadas a seguir.

D1 - Tempo de simulação: A primeira delas está relacionada ao tempo de simulação,

utilizando a versão fast-time do simulador, o número de iterações por segundo alcan-
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çado nas configurações de teste apresentadas em 6.1.3 , é em torno de 5 (iterações/s).

Ou seja para um processo de aprendizagem com 300 mil iterações como o usado em

(24), o tempo de simulação seria em torno de 138 horas. Diminuindo a tolerância de

integração e desconsiderando os efeitos externos como o ventos e correntes, o tempo

de simulação gira em torno de 30 iterações/s (parâmetro de treinamento TPN apre-

sentado em 6.1.3), ou seja 2h40 de treino para 300 mil iterações. Parte da lentidão

imposta pelo simulador é devida à estrutura de comunicação.

D2 - Falhas de comunicação: Um número elevado de iterações pode favorecer erros

de comunicação. Tal erro pode prejudicar a simulação, uma vez que neste caso a

resposta do ambiente de simulação (estado do navio) é divergente do real valor do

estado do navio.

D3 - Falha de reinicialização: Foi identificada ao longo do projeto um erro na velocidade

do navio quando o simulador era exposto a um número elevado de reinicializações da

propulsão, leme e posição (realiza-se uma reinicialização a cada início de episódio). O

problema deve-se ao fato do simulador não ser projetado para muitas reinicializações

seguidas em uma mesma instância. Este problema foi contornado iniciando-se uma

nova instância de simulação a cada 10 episódios, o que induziu um aumento no

tempo de simulação.

Tais dificuldades fizeram com que o requisito de projeto primário RP2 fosse reformu-

lado afim de aumentar a velocidade de simulação e construir uma solução que convergisse

para o cumprimento da missão proposta.

Nesse sentido, uma solução alternativa que foi proposta e desenvolvida foi a realização

de um simulador simples de navegação (SSN) em python, o qual foi utilizado para ensinar

o agente de APR as dinâmicas básicas de navegação. Em seguida para que o agente

fosse capaz de cumprir a missão proposta no simulador TPN, foi proposto o método

de Transferência de Aprendizado. Os detalhes sobre essa etapa são detalhada na seção

seguinte.

6.1.2 Simulador simples: Uso e desenvolvimento

O Simulador Simples de Navegação (SSN) tem como finalidade reproduzir a dinâmica

de navegação de uma embarcação afim de ser utilizada como suporte para o método de

aprendizagem. Sua utilização foi inspirada nos trabalhos relacionados como os citados em

5.1. O uso de tal simulador representa a reformulação do RP2 e é descrito a seguir:
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• O sistema de APR deve basear-se na transição de estados fornecida pelo SSN afim

de aprender uma dinâmica de navegação simples.

• Utilizando o agente aprendido no SSN, deve-se proceder para uma etapa de trans-

ferência de aprendizagem (TA).

• Após a TA o agente deve apresentar uma performance compatível com as descritas

na seção 2.2.1.

O diagrama a seguir ilustra a estrutura de aprendizado desenvolvida a partir do SSN.

Agente

Ambiente
TPN

Agente

Ambiente
SSN

Pesos da
Rede S-1

Aprendizado S-1

Pesos da
Rede S-1

transferência

Aprendizado S-2

Estados
Recompensa Ações Estados

Recompensa
Ações

Agente
Teste Performance

Ambiente
TPN

Fim
Aprendizado

Ações
Estados
Recompensa

Pesos da
Rede S-2

Resultado
Performance

Figura 11: TA usando SSN e simulador TPN

O simulador desenvolvido é um simulador em 3 graus de liberdade, utiliza as equações

apresentadas na seção 4, e implementa um método de integração Runge-Kutta de ordem

5. O tempo de simulação utilizando o simulador simples gira em torno de 200 iterações/s

e não há erros de comunicação, uma vez que o SSN foi desenvolvido em python.

Além disso o SSN utiliza a embarcação com as mesmas características do simulador

TPN, e o comportamento dinâmico de simulação foi ajustado para ser similar ao do

simulador TPN. Tal ajuste foi realizado através uma identificação não linear de parâmetros

utilizando-se como ferramenta auxiliar o software MATLAB.

O SSN está atualmente disponível online sob o nome de ShipAI para contribuição

com a comunidade OpenAI Gym, assim como para contribuição científica.
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6.1.3 Parâmetros de simulação

Nesta seção os parâmetros de simulação que influenciam o design da solução são

apresentados assim como suas justificativas.

P1 Tempo de integração (tint): O tempo de integração é o tempo que o método de

integração numérico (Runge-Kutta) utiliza como limite superior para integrar as

equações dinâmicas que compõem o sistema físico simulado. A cada iteração do

simulador, o sistema dinâmico avança tint.

P2 Passo de integração: O passo de integração é o passo de tempo avançado a cada sub-

etapa de integração numérica, este é função do tempo de integração e da tolerância

de integração.

P3 Tolerância global (atol) e relativa (rtol): Tolerâncias relativas e absolutas são utili-

zadas explicitamente no SSN. O solver do SSN utiliza essas medidas para manter as

estimativas de erros locais menores que atol+ rtol · ‖(si)‖, onde si é o estado estado

integrado. No simulador TPN a tolerância é controlado pelo parâmetro TOLCONV .

P4 Tempo de ação (tacao): O tempo de ação define o intervalo entre o envio de duas

ações consecutivas ao simulador (uma iteração do algoritmo de aprendizagem). Ge-

ralmente é definido como sendo tacao = Kint · tint. Ou seja uma iteração terá Kint

etapas de integração numérica.

Primeiramente definiu-se fixo tacao = 10s, como requisitado em 2.2.1 tanto para o

ambiente utilizando o simulador TPN quanto para o SSN. Esse valor foi definido com base

em dados empíricos de navegação. Em seguida definiu-se as configurações de treinamento

e teste para o simulador TPN e SSN como se segue:

• Configuração de treinamento e teste SSN:

tint = tacao = 10 s,

atol = 1e−4,

rtol = 1e−6.

(6.1)

• Configuração de treinamento (TA) TPN:

tint = tacao = 10 s,

TOLCONV = 1e−3.
(6.2)
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• Configuração de teste TPN:

tacao = 10 s,

tint = 0.5,

TOLCONV = 1e−3.

(6.3)

6.2 Estruturação do problema de APR

Nessa seção é descrita a estrutura dada ao problema de APR, desde a definição de

parâmetros até os algoritmos utilizados. O problema foi modelado afim de atingir a missão

descrita em 2.1, e respeitando os requisitos descritos em 2.2.1.

6.2.1 Algoritmos

Dadas as soluções propostas na literatura, escolheu-se para a análise a comparação

do método variante de Q-learning aproximado - DQN1 e o DDPG2.

6.2.2 Estados utilizados

O problema da manobra de embarcações possui várias variáveis de estado, seja em

posição, rotação, velocidade, etc. Para simplificar o problema e permitir sua aplicação em

APR, foram selecionadas aquelas consideradas essenciais na manutenção de uma trajetória

dada durante a navegação. O estado escolhido foi

s = (d, θ, vx, vy, θ̇), (6.4)

onde:

• d: Distância do centro de massa do navio à linha-guia

• θ: Ângulo entre o eixo longitudinal do navio e a linha-guia

• vx: Velocidade horizontal do navio no seu centro de massa (na direção da linha-guia)

• vy: Velocidade vertical do navio no seu centro de massa (perpendicular à linha-guia)

• θ̇: Velocidade angular do navio
1cf. 3.4.4.3
2cf. 3.4.5.1
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Essas variáveis de estado estão ilustradas na figura 12.

linha-guiaθ

vx
d

θ
.

vy

Figura 12: Esquema do navio com estados utilizados na APR

6.2.2.1 Limites admitidos

Os limites admitidos para os estados no algoritmo de APR são descritos a seguir.

Caso o agente ultrapasse tais limites, o episódio é encerrado.

d ∈ [0, 150] m,

θ ∈
[
− π

2
,
π

2

]
rad,

vx ∈ [0, 4] m/s,

vy ∈ [−4, 4] m/s,

θ̇ ∈
[
− π

9
,
π

9

]
rad/s.

(6.5)

O limite máximo de d decorre do ambiente utilizado na análise, como descrito mais a

frente neste capítulo, na seção 6.2.5.2.

6.2.2.2 Inicialização dos estados

A inicialização do estado de cada episódio é feita aleatoriamente, porém com limites

menores que os admitidos, para garantir a navegabilidade e manobrabilidade do navio no

estado inicial, dando estabilidade ao algoritmo de aprendizagem. Buscou-se utilizar esta-

dos iniciais compatíveis com aqueles que ocorrem durante a entrada de uma embarcação

em um canal. Tais limites são mostrados abaixo:

d0 ∈ [0, 30] m,

θ0 ∈
[
− π

15
,
π

15

]
rad,

vx0 ∈ [1, 2] m/s,

vy0 ∈ [−0.4, 0.4] m/s,

θ̇0 = 0 rad/s.

(6.6)
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6.2.3 Ações de comando

As ações de comando foram desenvolvidas para controlar o ângulo de leme e a propul-

são do navio. Como descrito na seção 4.2, as ações de comando tem a forma AV = [Al, Ap],

onde Al é o comando adimensional de leme e Ap o comando adimensional de propulsão,

de tal forma que Al ∈ [−1, 1] e Ap ∈ [0, 1].

Para o DQN, as ações foram discretizadas afim de se adequar ao modelo, para tanto,

optou-se por dividir o espaço de ações de leme em 21 ações discretas, e o espaço de ações

de propulsão em 3. Tal divisão foi feita com base em técnicas empíricas de navegação de

práticos. Sendo assim tem-se que:

ADQN
V = [ADQN

l , ADQN
p ],

SSN :ADQN
l ∈ {−1,−0.9,−0.8, ..., 0.9, 1},

TPN :ADQN
l ∈ {−1,−0.9,−0.8, ..., 0.9, 1}/3,

ADQN
p ∈ {0, 0.1, 0.2}.

(6.7)

Optou-se por reduzir os ângulos de leme no DQN pois notou-se um melhor compor-

tamento desta maneira no simulador TPN. Para o DDPG, as ações são do tipo contínuo,

porém limitou-se as ações de leme e propulsão como se segue:

ADDPG
V = [ADDPG

l , ADDPG
p ],

ADDPG
l ∈ [−1/3, 1/3],

SSN :ADDPG
p ∈ [0, 0.2],

TPN :ADDPG
p ∈ [0, 0.24].

(6.8)

A heurística da limitação de leme deu-se pois a partir de simulações preliminares

identificou-se que com o comando de leme entre -10o e 10o é possível controlar a direção

da embarcação, começando com os estados citados em 6.2.2.2. Tal procedimento pode ser

entendido como uma adaptação simples entre os simuladores SSN e TPN.

Para o controle de leme optou-se por controlar a propulsão com empuxos positivos, e

o limite definido em 0.2 é suficiente para acelerar o navio até a velocidade de setpoint no

SSN, para o simulador TPN aumentou-se esse limite em 20%, após testes empíricos que

mostraram uma melhor performance com essa configuração.
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6.2.4 Definição das recompensas

As recompensas, apesar do nome, comumente são valores negativos dados ao agente,

pois devem punir estados/ações indesejáveis proporcionalmente ao quão indesejáveis eles

são. Em alguns casos, no entanto, pode-se dar recompensas positivas quando o agente

atinge um objetivo, por exemplo. No caso de navegação considerado, decidiu-se utilizar

uma recompensa negativa para os desvios do navio em relação ao setpoint de estados

desejado, com uma certa tolerância. Optou-se por dividir os desvios pelos desvios máximos

tolerados no treinamento, para facilitar a ponderação das importâncias de cada desvio.

A recompensa utilizada segue a fórmula abaixo:

r(s) = ktol − kd ×
|d|
dmax

− kθ ×
|θ|
θmax

− kvx ×
|vx − vsp|
vxmax

− kvy ×
|vy|
vymax

− kθ̇ ×
|θ̇|
θ̇max

, (6.9)

onde:

• ktol: Constante de tolerância da recompensa, define a margem de erro que o navio

pode cometer ainda possuindo uma recompensa positiva;

• {kd, kθ, kvx , kvy , kθ̇}: Constantes de proporcionalidade das recompensas, ajustam a

importância dada a cada um dos desvios;

• vsp: Setpoint de velocidade do navio;

• {dmax, θmax, vxmax , vymax , θ̇max}: Limites máximos admitidos para os estados (vide

equação 6.5).

Nos testes realizados, utilizou-se ktol, kvx , kvy , kθ̇ = 1 e kd, kθ = 8 .

6.2.5 Parametrização

6.2.5.1 Hiper-parâmetros

Para a parametrização do modelo, buscou-se utilizar parâmetros coerentes com o que

se encontra nos trabalhos relacionados3 e com a complexidade do problema a ser resolvido.

Os hiper-parâmetros utilizados em cada método são mostrados na tabela abaixo:
3cf. 5.3
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Tabela 2: Hiper-parâmetros utilizados nos métodos aplicados ao problema do navio

Métodos DQN DDPG

Espaço de Estados Dimensão: 5, Tipo: Contínuo Dimensão: 5, Tipo: Contínuo

Espaço de Ações
Dimensão: 2, Tipo: Discreto

(3 intensidades de propulsão

e 20 ângulos de leme)

Dimensão: 2, Tipo: Contínuo

Tipo de RNA
DQN com Replay de

Experiência e RNA Alvo

DDPG: Ator-Crítico, Replay

de Experiência, RNA Alvo

Arquitetura da(s)

RNA(s)

Sequencial, Entrada: Estados,

4 camadas: [256,128,64,33]

neurônios, Ativação ReLU

nas camadas ocultas, linear

na de saída, Saída: Valores

de ação, Otimização: Adam,

taxa de aprendizagem 1e−3

Ator: Sequencial, Entrada:

Estados, 3 camadas: [400,300,2]

neurônios, Ativação ReLU nas

camadas ocultas, Softsign na

de saída, Saída: Ação,

Otimização: Adam,

taxa de aprendizagem 1e−4

Crítico: Sequencial, Entrada:

Ações, Estados, 3 camadas:

[400,300,1] neurônios, Ativação

ReLU nas camadas ocultas,

linear na de saída, Saída:

Booleana (dimensão = Ações),

Otimização: Adam, taxa de

aprendizagem 1e−3

Treinamento

Iterações: 400000, γ = 0.99

Política: ε-greedy, decaimento

linear de ε de 1 a 0,1

Memória do Replay de

Experiência: 20000 transições

Atualização Dura do

Modelo Alvo: C = 1000

Iterações: 600000, γ = 0.99

Processo Aleatório: Ornstein

Uhlenbeck (θ = 0.3,

µ = 0, σ = 0.3),

Memória do Replay de

Experiência: 20000 transições

Atualização Mole do

Modelo Alvo: C = 1e−2

Transferência de

Aprendizagem

MPI com 50000 iterações,

Decaimento linear de ε de

0,1 a 0,01

MPI com 100000 iterações,

Restante dos parâmetros

iguais aos do treinamento
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6.2.5.2 Ambiente

O ambiente utilizado para aprendizagem tem sua estrutura baseada nos modelos de

ambientação OpenAI Gym. Tanto para o SSN como no caso do TPN utilizou-se a mesma

interface gráfica e ambientação. Tal estruturação foi baseada nos trabalhos relacionados

como citado em 5.1 .

O cenário utilizado nos experimentos realizados foi inspirado no canal de acesso do

Porto de Suape, localizado em Recife, Pernambuco, no Nordeste brasileiro. O canal foi

dimensionado como sendo retangular de 5000 metros de comprimento e 300 metros de

largura. A linha-guia que o navio deve seguir é a linha-média longitudinal do canal.

Temos então os pontos inicial e final da trajetória-guia definidos como:

(Xinicial, Yinicial) = (0, 0); (Xfinal, Yfinal) = (5000, 0) m; (6.10)

e o espaço entre as duas retas que delimitam a largura do canal:

Ecanal = 300 m. (6.11)

O setpoint de velocidade do navio é de 2 m/s.
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7 RESULTADOS

Esta seção visa apresentar o resultado obtido no âmbito do treinamento, teste e con-

trole final do navio utilizando os métodos DQN e DDPG.

7.1 Treinamento

Nesta seção avalia-se os fatores de aprendizagem e de TA nos processos de DQN e

DDPG.

7.1.1 DQN

7.1.2 Recompensa acumulada treino SSN

Uma das maneiras de avaliar um algoritmo de aprendizagem é através da análise da

recompensa acumulada durante o treinamento como mostrado na figura 13. É possível

observar que após o episódio 2600 há um salto no valor da recompensa do navio, pode-se

inferir que a partir de então o navio deixou de colidir frequentemente com as bordas do

canal e passou a alcançar 5000 m de navegação sem colisão.

Figura 13: Recompensa acumulada treino no SSN - DQN
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É notável também a presença de ruído na evolução da recompensa acumulada, isso

pode ser explicado pelo caráter aleatório das inicializações de estados, o que, por sua vez,

gera diferenças expressivas no desempenho geral do episódio. Ou seja, quando o navio

inicia suas condições de navegação com baixo ângulo de aproamento e baixa distância

da linha-guia é mais fácil para o agente controlar o navio do que quando o ambos são

elevados.

Apesar de não ser visível um grande aumento na recompensa após o salto por volta

dos 2600 episódios, o navio continua seu aprendizado a cada episódio, porém de forma

menos visível pelo gráfico de recompensa acumulada.

7.1.3 Recompensa acumulada TA TPN

O gráfico de recompensa acumulada para o processo de TA é mostrado na figura 14,

a primeira parte da TA consiste em uma etapa de warm-up (aquecimento), em que as

ações do agente do SSN são registradas na memória dos batch de estados, a região até

50 episódios apresenta portanto alto valor de reward, logo em seguida a TA é inicializada

com uma política com ε-greedy descendente, portanto, o gráfico apresenta uma região de

baixa recompensa seguida por um aumento no final do episódio.

Durante os experimentos de TA não houve melhora expressiva no desempenho da

navegação. Diversas grandezas para o número de iterações foram estudadas, porém não

observou-se melhorias com o aumento do número de iterações, portanto chegou-se a con-

clusão de que 50 mil iterações de TA eram suficientes para uma navegação de desempenho

análogo às demais grandezas.

Atribui-se esse resultado à limitação de controle da política DQN associada ao sistema

de Hard Target Update, o qual pode apresentar oscilação na otimização de políticas para

alguns modelos de aprendizagem.
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Figura 14: Recompensa acumulada treino no TPN - DQN

7.1.4 DDPG

7.1.5 Recompensa acumulada treino SSN

Observa-se que após o episódio 500 há um salto no valor da recompensa do navio,

pode-se inferir que a partir de então o navio deixou de colidir frequentemente com as

bordas do canal e passou a alcançar 5000 m de navegação sem colisão.

Figura 15: Recompensa acumulada treino no SSN - DDPG

Assim como no caso anterior, observa-se a presença de ruído na evolução da recom-

pensa acumulada, isso pode ser explicado pelo caráter aleatório das inicializações de es-

tados.
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7.1.6 Recompensa acumulada TA TPN

A recompensa acumulada pode ser usada para analisar-se também a TA. Nesse caso

porém, não se observa um grande aumento no acúmulo de recompensas, porém, como

observado na seção 7.2.5 o desempenho da navegação é melhorado.

Figura 16: Recompensa acumulada TA no TPN - DDPG

7.2 Análise de Performance

Nessa seção uma análise da performance da política de navegação é realizada. Busca-

se avaliar a qualidade da navegação em relação à convergência da distância (d) e velocidade

horizontal (vx), assim como analisa-se os demais estados observáveis, tais como o ângulo

de ataque (θ), velocidade de rotação (θ̇) e velocidade de aproximação (vy).

Para analisar a performance do agente durante a tarefa de controle da embarcação

usando o DDPG e o DQN foram realizados testes de performance em três etapas:

1 Performance do agente em navegação no SSN com os pesos da rede neural treinada

no SSN

2 Performance do agente em navegação no TPN com os pesos da rede neural treinada

no SSN

3 Performance do agente em navegação no TPN com os pesos da rede neural após a

TA no TPN

Com os resultados de 1 pode-se justificar o treinamento inicial no agente DDPG para

posterior TA. Com os resultados de 2 pode-se avaliar a viabilidade do TA assim como a

coerência do modelo SSN em relação ao TPN em relação à tarefa de aprendizado. Com
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os resultados de 3 pode-se avaliar o resultado da TA, assim como o cumprimento dos

requisitos de projeto e performance.

Para cada uma das três análises, utilizou-se dois cenários para avaliação de perfor-

mance:

• Cenário 1:

100 episódios com inicialização aleatória assim como descrito em 6.2.2.2. O objetivo

é avaliar a sobrevivência da navegação, ou seja a ausência de colisão com o canal

durante os episódios. Além disso pode-se avaliar de forma geral a convergência da

distância (d→ 0) e a convergência de velocidade (vx → 2 m/s) .

• Cenário 2:

10 episódios com inicialização definida, de tal modo que os estados iniciais sejam

si = [di, θi, vxi, vyi, θ̇i], onde:

di = 30 m,

θ =
k

10
· π

15
rad, k = 0, 1, 2, ..., 9 ,

vai = 1.5 m/s,

vxi = vai · cos(θ) e vyi = vai · sin(θ),

θ̇i = 0.

(7.1)

O objetivo do cenário 2 é observar a evolução dos estados observáveis para cada

uma das inicializações, assim como avaliar a performance das ações. Dessa forma é

possível avaliar a convergência e o caráter da ação de leme e propulsão.

7.2.1 DQN

7.2.2 Performance no SSN

• Resultado cenário 1:

Nenhuma colisão. Convergência oscilatória para a distância com d < 20 m, não con-

vergência da velocidade, apesar de haver uma rampa ascendente para a velocidade.

• Resultado cenário 2:

Nos 10 episódios houve a convergência da distância d < 25 m, com oscilação do

navio e um erro estacionário de 20 m como observado na figura 17.
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Além disso observa-se que não há convergência para a velocidade desejada, apesar

da velocidade apresentar perfil ascendente.

O DQN não é capaz de controlar o ângulo de navegação para suavizar a direção do

navio e não consegue otimizar a velocidade.

Figura 17: Evolução de estados observáveis DQN SSN

7.2.3 Performance no TPN antes da TA

• Resultado cenário 1:

Nenhuma Colisão. Convergência oscilatória para a distância com d < 18 m, não

convergência da velocidade.

• Resultado cenário 2:
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Em 9 dos 10 episódios houve a convergência da distância, com oscilação inferior à

18 metros como observado na figura 18. O episódio mais crítico levou à colisão do

navio, mostrando o ambiente SSN não é capaz de representar a dinâmica do TPN

para o caso do agente DQN.

Além disso observa-se que não há convergência para a velocidade desejada, pelo

contrário, houve uma queda para vy em torno de 1.2 m/s.

Figura 18: Evolução de estados observáveis DQN SSN

7.2.4 Performance no TPN após a TA

• Resultado cenário 1:

Nenhuma Colisão. Convergência pouco oscilatória para a distância com d < 15 m,

não convergência da velocidade.

• Resultado cenário 2:
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Para os 10 episódios houve a convergência da distância, com oscilação inferior à 25

metros como observado na figura 19.

Além disso observa-se que não há convergência para a velocidade desejada.

Observa-se que o DQN apresenta limitações para o controle de velocidade e direção

do navio.

Figura 19: Evolução de estados observáveis DQN SSN

7.2.5 DDPG

7.2.6 Performance no SSN

• Resultado cenário 1:

Nenhuma Colisão. Convergência geral da distância, não convergência da velocidade.
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• Resultado cenário 2:

Durante os 10 episódios houve a convergência da distância, com pouca ou nenhuma

oscilação do navio como observado na figura 20

Além disso observa-se que não há convergência para a velocidade desejada, entre-

tanto, isso não torna-se um problema pois espera-se convergir uma vez que haja

mais episódios de treinamento durante a TA.

Figura 20: Evolução de estados observáveis DDPG SSN

7.2.7 Performance no TPN antes da TA

• Resultado cenário 1: Nenhuma Colisão. Convergência geral da distância, não con-

vergência da velocidade.

• Resultado cenário 2:
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Em 9 dos 10 episódios houve a convergência da distância (1 colisão), com leve

oscilação do navio como observado na figura 21.

Além disso observa-se que não há convergência para a velocidade desejada, entre-

tanto, como já citado anteriormente espera-se em velocidade após a TA.

É notável que o agente seguindo a política aprendida no SSN é suficiente para

controlar a posição do navio durante a navegação sem que haja nenhuma colisão.

Ainda que a velocidade não tenha convergido, e que haja oscilações, é esperado que

a TA supere esses problemas.

Figura 21: Evolução de estados observáveis DDPG TPN antes TA
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7.2.8 Performance no TPN após a TA

• Resultado cenário 1: Nenhuma Colisão. Convergência geral da distância, conver-

gência da velocidade.

• Resultado cenário 2:

Durante os 10 episódios houve a convergência da distância, com uma leve ou ne-

nhuma oscilação do navio como observado na figura 22. Além disso, observa-se

que após a TA houve uma tendência de convergência para a velocidade desejada

no fim dos episódios. A velocidade de 1.8m/s (10% do setpoint) é atingida para

todos as inicializações por volta da iteração 138, ou seja t = 1380s. Isso indica um

aperfeiçoamento da política de controle no ambiente de simulação TPN.

Figura 22: Evolução de estados observáveis DDPG TPN após TA
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7.3 Performance do ponto de vista de Controle

Em métodos de Controle Clássico uma estrutura de controle é predefinida para rea-

lizar uma tarefa de controle bem estabelecida em um sistema físico que normalmente é

modelado e utilizado para o design do controlador, como é o caso dos controles PID, LQR

e Controle Robusto.

Tal estrutura após desenvolvida é analisada do ponto de vista do cumprimento de sua

tarefa em termos de robustez, tempo de assentamento, erro estacionário, entre outros.

Analisa-se também o acionamento e gasto energético do controlador.

Do ponto de vista da APR, porém, o sistema de controle pode ser entendido como

a política aprendida pelo agente durante a aprendizagem, e nesse caso não se realiza

diretamente o design das saídas das ações de controle. Sendo assim é essencial analisar-se

o desempenho do controle assim como sua viabilidade.

7.3.1 DQN

7.3.2 Tempo de Subida (Rise Time)

Para o caso do DQN não é possível analisar o tempo de assentamento em 10%, uma

vez que a margem de 10% não é alcançada devido às oscilações. Pode-se, porém, observar

que para todos os testes do cenário 2 descrito em 7.2, o tempo de subida (rise time) é

em torno de 1000 s, comparando-se com o DDPG, o qual possui um tempo de subida

entre 500 e 1200 s, observa-se que o DQN possui uma um tempo de resposta com menor

variância neste experimento.

7.3.3 Ações de controle

As ações de leme e propulsão para o caso em que k = 4 descrito em 7.2, cenário 2 é

apresentado na figura 23.

Para as ações de leme, observa-se um caráter oscilatório entre os extremos de controle

[-1/3, 1/3], com poucas graduações de amplitude, o agente utiliza-se apenas dos níveis 0.3,

0.2 0.1 e -0.3. Esse resultado é fisicamente inviável, pois ainda que o tempo de transição

entre as posições do leme seja fisicamente realizável, o gasto energético e a possível perda

de estabilidade de controle limitariam uma aplicação prática desse tipo de controle.

Para as ações de propulsor, observa-se uma amplitude variável entre 0, 0.1 e 0.2, ainda
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que não haja pleno controle alcance do controle de velocidade adequada.

Figura 23: Evolução da ação, para o cenário 2 com k=4 DQN TPN após TA

7.3.4 DDPG

7.3.5 Tempo de assentamento (Settling Time)

A figura a seguir apresenta o tempo de assentamento para os 10 experimentos descritos

em 7.2, cenário 2.

O tempo de assentamento (10%) para a distância é crescente com relação ao número

de episódios, uma vez que o ângulo de aproamento inicial aumenta com k, como descrito

no experimento. No caso mais favorável obtém-se um tempo de cerca de 250 s e no mais

desfavorável de cerca de 1100 s.

O tempo de assentamento da velocidade é levemente decrescente, mas é em torno de

1400 s.
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Figura 24: Tempo de assentamento DDPG

7.3.6 Ações de controle

As ações de leme e propulsão para o caso em que k = 10 (cenário 2) descrito em 7.2

é apresentado na figura 25.

Para as ações de leme, observa-se um caráter oscilatório entre os extremos de controle

[-1/3, 1/3], com poucas variações de amplitude. Esse resultado é fisicamente inviável, pois

ainda que o tempo de transição entre as posições do leme seja fisicamente realizável, o

gasto energético e a possível perda de estabilidade de controle limitariam uma aplicação

prática desse tipo de controle. A explicação para esse comportamento pode estar ligada

à função de ativação da última camada da rede neural (softsign), a qual possui uma

pequena zona de transição entre os extremos (+1, -1).

Para as ações de propulsor, observa-se uma amplitude quase constante em torno de

0.24, o limite máximo da ação de propulsão.
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Figura 25: Evolução da ação, para o cenário 2 com k=10 DDPG TPN após TA

7.4 Avaliação de requisitos

7.4.1 Requisitos Primários

Os requisitos primários foram cumpridos pela aplicação do método de DDPG, porém

não foram cumpridos pelo DQN no que se refere ao setpoint de velocidade e posição.

O requisito RP2 foi adaptado para que a solução pudesse implementar a TA, como

explicado em 6.1.2.

7.4.2 Requisitos Secundários

o RS1 foi cumprido uma vez que realizou-se uma comparação entre os métodos DQN

e o DDPG.

o RS2 não foi explorado no escopo do trabalho.
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8 CONCLUSÃO

Dados os resultados mostrados no capítulo anterior, pode-se concluir que é possí-

vel desenvolver uma lei de controle para o problema de navegação em águas restritas

utilizando-se métodos de Aprendizagem por Reforço sem uma complexidade muito ele-

vada.

O método DDPGmostrou um bom desempenho no cumprimento da tarefa, e o método

DQN mostrou-se insuficiente para controlar a velocidade e a direção do navio, apresen-

tando oscilações de distância.

Apesar de cumprir seus objetivos, os métodos apresentam limitações para apelações

práticas tais como: a avaliação da robustez do sistema perante situações não conhecidas

pelo agente; a adaptação para a implementação de uma lei de controle menos custosa

do ponto de vista energético; a viabilidade de navegação dado os padrões de navegação

oscilante na trajetória.

8.1 Perspectivas futuras

Dada a criticidade do sistema abordado (acidentes não são tolerados pois podem ter

consequências drásticas), para a consolidação do uso de Aprendizagem por Reforço no

controle de embarcações, é necessário um estudo extensivo dos parâmetros utilizados no

treinamento. Para tanto sugere-se a verificação da influência da atualização do modelo

alvo e da parametrização dos processos estocásticos no comportamento da resposta dada

pelo APR. Tal linha de estudos pode revelar influências e correlações entre o comporta-

mento de navegação e os de hiper-parâmetros, as quais não foram abordadas no escopo

desse trabalho.

Uma outra linha de trabalho possível é a aplicação de um filtro de tipo passa-baixa

nas ações de comando geradas pelo APR afim de suavizar a resposta do sistema e evitar

as oscilações inviáveis apresentadas no comando de leme, por exemplo. Visto que a função
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de ativação softsign na RNA utilizada pelo ator DDPG possui uma região de transição

pequena, isso pode justificar a transição abrupta das ações de controle, que resulta nas

oscilações indesejáveis no leme. A utilização de outra função de ativação, principalmente

na camada de saída, de tipo linear (ou outro que possua uma transição gradual) também

poderia ser uma linha de estudo para solucionar esse inconveniente.

Como uma opção extra para que o controle se torne mais contínuo tem-se a possi-

bilidade de incluir o ângulo de leme nos estados observáveis na APR e de se modificar

a ação do comando de leme para que ela se torne incremental, afim de que as ações do

agente sejam sempre viáveis fisicamente e visando uma redução energética. Finalmente,

pode-se também estudar o desacoplamento das ações de leme e de propulsão do afim de

analisar-se o cumprimento dos objetivos de maneira independente.
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APÊNDICE A – PARÂMETROS DO SIMULADOR

A.1 Parâmetros do Navio

Tabela 3: Coeficientes da matriz de massa e massa adicional
M 115000 10^6 Kg

Iz 414000000 10^6 Kg.m^2

M11 14840.4 10^6 Kg

M22 174050 10^6 Kg

M26 38369.6 10^6 Kg.m

M62 36103 10^6 Kg.m

M66 364540000 10^6 Kg.m^2

Tabela 4: Dimensões do Navio
Comprimento (L) 244.745 m

Boca (B) 42 m

Calado [Draft] (D) 15.3 m

Centro de Massa (Xg, Yg, Zg) (2.223 , 0.000, 12.300) m

Posição do leme (Xl, Yl, Zl) (-115, 0, 6) m

Posição do Propulsor (Xp, Yp, Zp) (-112.4, 0, 3.5) m

Área molhada (S) 27342 m^2

Centro de Cross-Flow (lp) 7.65 m
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A.2 Parâmetros Hidrodinâmicos

Tabela 5: Constantes hidrodinâmicas da água e parâmetros aproximados de arrasto do

navio
Densidade da água (ρ) 1.025 10^3 Kg·m^-3

Viscosidade Dinâmica(µ) 1.002 10^-3 kg(m·s)^-1
Coeficiente de arrasto lateral (Cy) 0.06 adimensional

Coeficiente de Bloco (Cb) 0.85 adimensional

A.3 Parâmetros do propulsor

Tabela 6: Parâmetros dimensionais do propulsor
Rotação Máxima (np) 1.6 Hz

Limites de Empuxo (Tpmin, Tpmax) (-1377, 2500) kN

Diâmetro (Dp) 7.2 m

A.4 Parâmetros Do Leme

Tabela 7: Parâmetros dimensionais do leme
Limites de ângulo (φmax, φmin) (-30, 30) o (graus)

Área efetiva (Arud) 68 m^2

Razão de aspecto (Λ) 2 adimensional


