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RESUMO

A navegagao de dguas restritas ainda é uma tarefa onde a Aprendizagem por Reforgo
foi pouco explorada na comunidade cientifica. No entanto, tais algoritmos poderiam
potencialmente trazer leis de controle mais robustas e eficazes para o campo, onde a
automacao possui diversos beneficios no evitamento de acidentes e redugao da necessidade
da formagao intensiva de pessoal (praticos). Este trabalho apresenta entao a utilizagao
de algoritmos de Aprendizado por Refor¢o para o controle automético dos movimentos
de manobra de navios em &aguas restritas. A aprendizagem de uma lei de controle foi
realizada utilizando-se métodos de Deep Q Network e de Gradiente de Politica (Deep
Deterministic Policy Gradient) em conjunto com um simulador numeérico para manobras
de navios. A lei de controle aprendida pelos dois métodos apresentou boa resposta nas
simulagoes realizadas de navegacao em um canal.

Palavras-Chave — Aprendizado por Refor¢o, Navegacao Interior, Redes Neurais, Apren-
dizado Computacional.



ABSTRACT

The navigation on restricted waters using Reinforcement Learning methods is still too
little explored in the scientific community. However, such algorithms could potentially
result in more robust and efficient control laws on the field. This work thus presents the use
of Reinforcement Learning algorithms for the automated control of vessels maneuvering
movements in restricted waters. Control laws are learned using Deep Q Network and
Deep Deterministic Policy Gradient methods coupled with a numerical simulator for ship
maneuvers. The control law learned by both methods presented good responses on channel
navigation simulations.

Keywords — Reinforcement Learning, Inland Navigation, Neural Networks, Machine
Learning.
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1 INTRODUCAO

1.1 Contexto

A automacao vem sendo utilizada para aumentar a eficiéncia de sistemas e processos, e
tem como um de seus objetivos diminuir ou substituir a interven¢gao humana em processos
nos quais a ocorréncia de erros nao é tolerada. O controle de navegacao de sistemas de

transporte é um exemplo no qual a automacao é pretendida para diminuir acidentes

ocasionados pela influéncia humana nos processos de pilotagem e controle.

Recentemente, a aplicagao de redes neurais e outros métodos de aprendizagem por
méquina tem apresentado bons resultados na automacao de sistemas de transportes tais
como automoveis, drones e helicopteros - os artigos de |Gerla et al.((1)) e Cutler e How|(2)
sao exemplos bem sucedidos dessa aplicacao. Por outro lado, existem problemas nos quais
solugoes concretas de automacao ainda nao foram plenamente desenvolvidas e aplicadas,

como ¢ o caso do controle de navios em aguas restritas.

Atualmente, a navegacao em aguas restritas é realizada por um comandante de navios
especializado nesse tipo de tarefa. O controle do navio é basado em seu conhecimento
das condig¢oes ambientais e meteorologicas locais e em sua experiéncia em atracamento
e transporte nessas regioes, exigindo, assim, profissionais experientes e especificos para

cada local.

Contudo, esse processo ainda apresenta riscos humanos, os quais sao causa recorrente
de acidentes maritimos como mostra Hetherington, Flin e Mearns(3). Busca-se entao,
na automacao, uma alternativa para diminui¢ao dos riscos associados ao processo de
manobras e navegacao em aguas restritas. Como mostra|Ahmed e Hasegawa(4)), tal tema

ainda esta em aberto, sendo objeto de pesquisa pertinente para o setor nautico.

Este trabalho visa entéo a aplicacdo de Redes Neurais Artificiais (RNA) e algoritmos
de Aprendizagem por Reforco (APR) em conjunto com o simulador de manobras do

Tanque de Provas Numeérico (TPN), descrito no trabalho de [Filho, Zimbres e Tannuri()),
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para o desenvolvimento de um sistema de controle de dire¢ao de um navio. O desempenho
de tais algoritmos ¢ avaliado pela sua capacidade de navegar uma embarcacao através de

uma determinada trajetoria.

1.2 Estado da arte

A utilizacao de redes neurais aplicadas ao transporte em geral é recorrente na lite-
ratura desde a década de 1990, como vé-se no trabalho de Dougherty(6). No artigo de
Hafner e Riedmiller(|7)), apresenta-se sistemas de controle em que a aplicagao de APR
foi bem sucedida, e demonstra-se que algumas adaptagoes sao viaveis para a concepgao
de controladores usando APR. Porém, como descreve |Amendola|(8), a aplica¢do na au-
tomacao da manobra de navios ainda é assunto pouco explorado na literatura cientifica.
Um exemplo é o trabalho de Ahmed e Hasegawa(4), no qual utiliza-se um controlador de

navios em aguas restritas assumindo trajetérias de navegacao conhecidas.

A aplicacao de APR para essas tarefas comecou a ser investigada recentemente. Um
dos primeiros resultados de relevancia presente na literatura é o de Stamenkovich{(9)), que
realizou um experimento utilizando um agente ator-critico semelhante a um neurénio e
simulou a navegacao de um navio através de um canal com o auxilio de sensores que
fornecem o rumo do navio, o angulo entre o rumo e o grupo de boias mais proximo e
a distancia até esse grupo. |Lacki(10) comparou em seu estudo a aplicagao dos algorit-
mos SARSA e Q-learning com um modelo discreto de estado para controlar o angulo
de ataque da embarcacao, na navegacao em aguas restritas com velocidade constante e
pequenos obstaculos. Mais recentemente, Rak e Gierusz(11) compararam a aplica¢ao do
método Q-learning (on-line) usando uma discretizacdo de estados e a Least Squares Po-
licy Iteration (LSPI) para estados continuos usando aproximadores de funcao (off-line).
Neste estudo, o objetivo foi gerar a trajetéria-guia de navegacao usando APR, a partir de
uma determinada configuragao do canal (disposi¢ao de obstaculos) que apresentava uma
posicao final como objetivo. |[Amendola(8) utilizou uma estratégia de APR usando Fitted
Q-Iteration com batchs de simulagoes geradas com o simulador de manobras do TPN,
através de uma discretizagao das acoes de controle e usando uma velocidade de navegacao
variavel, com o objetivo de seguir uma linha-guia em um canal. Os resultados obtidos, no
entanto, nao foram satisfatorios e a embarcacao obteve movimentos oscilatorios ao redor

da linha-guia a partir da politica de navegacao aprendida pelo algoritmo.
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1.3 Objetivos e especificacoes

O objetivo principal desse trabalho é aplicar métodos de APR que sejam capazes de
controlar a navegacao de um navio em aguas restritas. Para tanto, utiliza-se o algoritmo
Q-learning (model-free) em conjunto com o simulador fast-time para criar um controlador
de direcao que seja capaz de manter o navio em uma trajetéria de navegacao através de

um canal.

O interesse nessa tarefa é avaliar a capacidade do algoritmo APR no controle de
dire¢@o (leme) e de velocidade (propulsao) do navio. Como objetivo secundario potencial
pretende-se desenvolver outros tipos de algoritmos APR e compara-los ao algoritmo Q-

learning.

1.4 Métodos

Este trabalho segue as tendéncias recentes na comunidade de machine learning e de-
senvolve um modelo de Aprendizado por Reforco do tipo Q-learning, aplicado ao controle
de trajetoéria de um navio. Exemplos bem-sucedidos de Q-learning aplicados a controle

sao apresentados por |[Nagendra et al.((12)) e Kiumarsi et al.(13).

Atualmente a difusao de técnicas de aprendizagem por maquinas tem sido incentivada
por comunidades de desenvolvimento de software e por grandes corporagoes, como o Go-
ogle. Através do suporte e fornecimento de ferramentas em codigo-aberto (open-source),

essas empresas buscam fomentar o desenvolvimento réapido dessa tecnologia.

Nesse contexto, as bibliotecas de aprendizagem de maquina e aprendizagem profunda
Keras e Tensorflow foram selecionadas para o uso nesse trabalho em razao de sua poten-
cialidade, flexibilidade de uso e grande comunidade de colaboradores. Outra biblioteca
também utilizada foi a OpenAl Gym, a qual propoe uma estrutura para o modelo de

formulacao de problemas de APR.

Como mencionado anteriormente, os dados utilizados para treinar o modelo sao obti-
dos através de uma simulacao de navegacgao fast-time. Em resumo, a simulacao reproduz
um modelo complexo do navio desenvolvido pelo TPN, a qual recebe como entradas as
acoes de comando de leme e propulsao, em seguida calcula a evolucao do espaco de estados
do navio para um intervalo de tempo desejado, utilizando o método de Runge-Kutta de
ordem 4 e fornece como saida os estados atualizados no fim da integracao. Os comandos

passados para o simulador podem ser decididos em modo offline ou em modo online de
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aprendizagem.

O desenvolvimento de um modelo de aprendizado por maquina do tamanho e da
complexidade do modelo Q-learning requer uma série de escolhas de projeto envolvendo
multiplos hiperparametros que definem a arquitetura do modelo e o algoritmo de trei-
namento. Encontrar o conjunto ideal desses parametros nao é viavel devido ao grande
espaco de busca e ao custo computacional da execucao do sistema. Portanto, extraimos
intuigoes dos trabalhos existentes (Ahmed e Hasegawa(4)), Xu et al.(14)) e seguimos al-
gumas heuristicas do campo néutico para desenhar o modelo de APR. Detalhes sobre as

heuristicas e intui¢oes utilizadas sdo apresentados no capitulo [6]

1.5 Organizacao

Essa monografia estd organizada em oito capitulos. O capitulo [l| introduz o tema a
ser abordado, faz uma revisao do estado da arte, traca objetivos e especificagoes gerais
do projeto e discute os métodos que serao testados. O capitulo [2| faz uma analise da
missao da solugao exposta nesta monografia, definindo tanto seus requisitos funcionais e
de desempenho, bem como seus modos de operacao. O capitulo [3| faz uma introducao
teorica a Aprendizagem de Maquina e suas vertentes, em especial as Redes Neurais e ao
paradigma da Aprendizagem por Refor¢o. O capitulo 4] mostra o modelo dindmico de
embarcagao utilizado neste estudo e o simulador numérico que realiza a integracao deste
modelo para obter a resposta do sistema. O capitulo [5| aborda trabalhos relacionados que
serviram de base para construgao da solugdo. O capitulo [0 descreve a solugdo proposta
para o problema exposto na Introducao. O capitulo [7] expoe os resultados obtidos com a
solucdo descrita. Finalmente, o capitulo [§ discute as possiveis conclusoes e perspectivas

que decorrem dos resultados.
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2 ANALISE E REQUISITOS

Neste capitulo, o projeto é analisado a partir da perspectiva funcional e construtiva
do sistema & partir da missao proposta. Primeiro, define-se formalmente a missao do
sistema, em seguida, define-se os requisitos necesséarios para o cumprimento da missao
proposta, por fim, realiza-se uma anélise funcional do sistema proposto e classifica-se seus

principais blocos construtivos.

2.1 Missao

A missao deste trabalho é criar uma politica de controle de navegagao inteligente que
seja capaz de guiar um navio ao longo de um canal de aguas restritas, guiando-o através
de uma trajetoria pré-definida. A missao do nosso sistema é traduzida pela formulagao

abaixo:
Seja S(t) o vetor de estados de interesse para navegagao do navio.
Seja A(t) um conjunto de agoes do agente para controle do navio.

Seja P.(S(t+ 1) = §'|S(t) = s, A(t) = a) a probabilidade de transicdo do estado s

para o estado s’ sob uma acao a.

Seja R(s,a,s’) uma fun¢ao de recompensa que traduz o acerto do navio em relac¢do a

uma trajetoria-guia pré-definida (equivalente a penalizar o desvio).

O objetivo é treinar um agente para afim de obter o conjunto de agdes A(t) que
maximizem a soma de recompensas coletadas durante uma trajetoéria resultante desse

conjunto de agoes.

Para tanto, o agente deve ser treinado para otimizar uma politica de decisao A(t) =
7(S(t)) a partir de um ambiente de simulagao de navegacao 1" que fornega a transigao de
estados S(t + 1) = f(S(t), A(t)), ou seja P,.
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Definicao de requisitos

As especificagoes definidas para realizagao da tarefa principal e secundéria sao resu-

midas a seguir:

2.2.1 Requisitos Primarios (RP)

Os requisitos definidos que o sistema deve seguir para atingir a missao proposta sao

0s seguintes.

RP1

RP2

RP3

RP4

RP5

RP6

RP7

RPS

RP9

(Natureza do Sistema): O sistema deve ser do tipo modelo de aprendizagem por

reforgo (APR), utilizando como proposta primaria um algoritmo Q-Learning.

(Transigao de estados): O sistema deve basear-se na transicao de estados fornecida

pelo simulador fast-time de navegacao em aguas restritas do TPN.

(Variaveis de controle): A politica de controle aprendida pelo APR deve atuar nos

comandos de leme e propulsor principal.

(Estados do navio): Os estados do navio, utilizados para construc¢ao da politica de
agao, devem se limitar a: Posigao espacial do navio (Xgps, Yaps), velocidade do navio

(V,, V), angulo de aproamento () e velocidade angular (6).
(Step de simulagao): Utilizagao do tempo de integragao do simulador fixo de 0.5 s.

(Implementagao): Utilizacao do algoritmo Q-Learning no ambiente de desenvolvi-

mento python-Keras seguindo os modelos de implementagao de interfaces do OpenAl

(Trajetoria e ambiente): A trajetoéria-guia deve ser definida como sendo o conjunto
de coordenadas que definem um segmento de reta (Xiniciat, Yiniciat)); (X finats Y final)s
e deve estar contida um canal de largura definida, o qual, por sua vez, deve ser

definido como sendo o espago Egqnq contido entre dois segmentos de reta 7, € 7.

(Fungao de recompensa): A fung¢ao recompensa deve punir o desvio do navio em re-
lagao a trajetoria-guia pré-definida (ou seja, recompensar a procissao da trajetoria).
A funcao recompensa deve utilizar somente os estados do navio citados em RP4 e

as coordenadas da trajetoéria-guia e dos segmentos de reta que definem o canal.

(Intervalo de ac@o): O intervalo entre o envio de duas agbes consecutivas para o

simulador deve fixo e ser superior ao tempo de resposta do algoritmo.
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RP10 (Desvio da trajetoria): O desvio entre o centro do navio e a linha-guia (erro de

tracking) deve ser €gespio < 0.5W, onde W é a largura do navio.

RP11 (Desvio de velocidade): O desvio do setpoint de velocidade deve ser inferior a 10%.

2.2.2  Requisitos Secundarios (RS)

Os requisitos secundérios podem ser realizados para complementar o desenvolvimento

deste trabalho, mas que nao sao necessarios para o cumprimento da missao proposta.

RS1 (Comparagao): Desenvolvimento e aplicacdo de outros algoritmos de APR para

comparagao com o método Q-learning.

RS2 (Complexidade): Geracao de trajetoérias-guia mais complexas apos valida¢ao em

trajetoria linear inicial.

2.2.3 Fatores de performance (FP)

Os fatores de performance sao indicadores da qualidade de execucao e aprendizagem
do sistema desenvolvido, os quais podem ser utilizados como métricas de avaliagao de
diferentes algoritmos, no caso do comprimento do requisito RS2. Os fatores de interesse

para esse trabalho sao descritos a seguir.

FP1 Numero de iteracoes necessarias na fase de aprendizado para atingir os niveis de

performance requisitados.

FP2 Numero de iteragoes necessarias para levar o navio até a linha guia (que se traduz

no tempo de resposta do controlador de APR).

2.3 Analise funcional

A anélise funcional consiste em definir os principais blocos de construgao do sistema
projetado. Essa divisao, além de ser o suporte para a criacao do modelo de APR, também
facilita a compreensao do mesmo, exibindo as funcionalidades de cada bloco do sistema.
As funcionalidades definidas sao apresentadas a seguir, cada uma delas atua em diferentes

modos de operagao, como mostrado na secao [2.4
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(Agente): O agente ¢ o nome dado a parte do sistema que recebe o estado atual
S(t) do ambiente e, baseado em uma politica de a¢do A(t) = 7(S(t)), realiza uma
agao de comando no navio para o controle de angulo de leme [(¢) e da poténcia do

propulsor P,(t).

(Ambiente): Ambiente é nome dado & parte do sistema que recebe um conjunto de
agoes de controle leme e propulsor A(t) = [3(t), P.(t)]" vindas do agente, e as envia,
através de uma interface, ao simulador TPN. O ambiente obtém como resposta do
simulador um conjunto de estados S(¢ + 1) vindos do simulador ap6s o termino da

iteragao e armazena o estado como variavel interna.

(Recompensa): Recompensa ¢ o nome dado a parte do sistema que recebe um
conjunto de estados atuais do navio S(t), que foram resultado de uma agao A(t —1)
tomada pelo agente em um estado S(t — 1), e calcula um valor para de recompensa
R(t) = 1. (S(t), A(t—1),S(t — 1)) para a a¢ao tomada. Essa recompensa é baseada
no cumprimento ou nao dos objetivos propostos, qual sejam, seguir uma trajetoria-

guia proposta.

(Aprendizado): Aprendizado é o nome dado & parte do sistema que recebe do sistema
que recebe um conjunto de estados atuais do navio S(t), que foram resultado de
uma agao A(t — 1) tomada pelo agente em um estado S(t — 1), resultando em uma
recompensa R(t). A partir desses dados, o Aprendizado é responsével por atualizar
a politica de tomada de decisao m(S(t)), de forma a maximizar a soma de futuras

recompensas R(t + 1).

(Interface-simulador): Interface-simulador é o nome dado a parte do sistema res-
ponsavel pela comunicagao entre o ambiente de funcionamento do nosso sistema de
APR (Python-shell) e o ambiente de simulagdo de navegagao (Software Comercial

TPN). Essa interface é utilizada para comunicac¢ao entre o Ambiente e o simulador.

(Parametros-simulador): Parametros-simulador ¢ o nome dado a parte do sistema
responséavel por configurar os parametros do simulador TPN no instante antes do
inicio da simulacao, tais como tempo de integracao, condi¢oes ambientais para o

navio e nimero de iteragoes.

(Parametros-Aprendizado): Parametros-Aprendizado é o nome dado a parte do
sistema responsavel por configurar os parametros de aprendizado. Os parametros
de aprendizado sao a taxa de exploracao ¢, que é responsavel pela parte aleatoria da

politica de decisao 7(S(t)), pela taxa de aprendizado «, que esté relacionado com a
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importancia dada a novos eventos durante a fase de aprendizagem, e pelo desconto

v, que ¢ a taxa de desconto dada a experiéncia obtida em iteragoes passadas.

F8 (Interface Gréafica): Interface-grafica é o nome dado a parte do sistema responséavel

pela visualizacao da navegacao grafica do navio, e dos estados de interesse S(t) do

navio.

O diagrama a seguir resume a funcionalidade de cada uma das partes do sistema.

Alt)

Sistema
Interface Grafica
o
Agente o Ambiente
m(S(t))
Recompensa
R(t)
- * 7 ¢ |Parametros
Aprendizadoj==—— Aprendizado

ST

(t), A(t), S(t+1)

Interface | _A®
Simulador|™ S +1)
Parametros
Simulador

Simulador
TPN

Figura 1: Diagrama de funcionalidades das partes do sistema

2.4

Modos de operacao

Os modos de operagao do sistema desenvolvidos sao divididos em 3 partes:

e Aprendizagem: Nesse modo o sistema realiza a aprendizagem da politica de agao a

partir da iteragao do algoritmo de APR com o simulador TPN. Durante essa etapa

busca-se uma politica 6tima que maximize a recompensa recebida pelo agente.

e Ajuste: Esse modo é alternada com o modo de aprendizagem e consiste na escolha

de hiper-parametros, tais como como a funcao de recompensa e os parametros de

Aprendizagem, que sao utilizados para avaliar o desempenho de aprendizagem do

algoritmo

e Inferéncia: Esse modo é o modo de inferéncia em que o Agente ja sabe controlar a

navegacao do navio, e nao aprende mais com suas acoes. Esse modo é o modo final

no qual o sistema opera para navegar em aguas restritas.
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3 MACHINE LEARNING E APRENDIZAGEM

Este capitulo tem como objetivo apresentar ao leitor a teoria bésica da aprendizagem
de maquina que foi considerada relevante para a compreensao deste e de outros trabalhos
apresentados como o estado da arte utilizado para a estruturagao e desenvolvimento do

projeto.

Primeiramente apresenta-se uma breve introducao sobre Machine Learning e os mo-
delos de aprendizagem que sao usualmente utilizados. Posteriormente apresenta-se o
conceito de Redes Neurais Artificiais e como tais sao usualmente utilizadas para a apren-
dizagem profunda. Em seguida, introduz-se os processos de Markov e sua relacao com
o problema de aprendizagem. Finalmente, apresenta-se o paradigma de Aprendizagem
por Reforco e os métodos Q-learning, Q-learning aproximado, Deep QQ Network e Deep

Deterministic Policy Gradient.

3.1 Modelos de aprendizagem automatica

O aprendizado de méaquina é um campo de inteligéncia artificial que usa técnicas
estatisticas para dar aos sistemas de computador a capacidade de "aprender"a partir de
um conjunto de dados (por exemplo, melhorar progressivamente o desempenho de uma

tarefa especifica), sem ser explicitamente programado para isso.

Segundo a definigdo de M. Mitchell, a aprendizagem de maquina (machine learning)
pode ser definida como: "Diz-se que um programa de computador aprende com a expe-
riencia E em relacao a alguma classe de tarefas T, e medida de desempenho P, se seu

desempenho nas tarefas em T, como medido por P, melhora com a experiéncia E."

Para "aprender", os métodos de aprendizagem utilizam técnicas estatisticas para cons-
truir modelos que permitem fazer previsoes ou decisoes guiadas a partir de um conjunto
de dados utilizados para a construcao dos parametros de decisao do algoritmo. O conjunto

de dados em questao é genérico e pode referir-se a diversos tipos e estruturas, como por
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exemplo, imagens de um tipo de objeto, trechos de texto, vetores de espacgo de estados de

um sistema simulado, entre outros.

A classificacao é um exemplo de um dos tipos de tarefas realizadas frequentemente
utilizando-se a aprendizagem automatica. Alguns dos problemas que sao abordados por
algoritmos de classificagao sao a filtragem de e-mails de spam, reconhecimento de carac-

teres manuscritos, diagnosticos médicos, visao computacional, etc.

O aprendizado de maquina, porém, abrange temas genéricos e possui muitas sub-
areas de aplicagao. Tipicamente, para fins de organizagao, os métodos de aprendizagem
sao dividuos em algumas grandes categorias, as quais dependem dos dados utilizados e
do modo de aprendizagem empregado pelo algoritmo. As principais categorias sao as

seguintes:

e Aprendizado supervisionado: Realizado quando os dados utilizados possuem "eti-
quetas", que sao fornecidas por algum "professor"(dados etiquetados previamente,
podendo ser feitos & mao ou por outro método). A tarefa de aprendizado consiste
entdo em determinar um modelo que leve as entradas (dados) as saidas (etiquetas)
a partir de um treinamento realizado com um conjunto de dados de treino. Esse
modelo é entao utilizado para etiquetar novos dados. Exemplos tipo sao as Maqui-
nas de Vetores de Suporte (SVM), regressao linear, arvores de decisao, k vizinhos

mais proximos, redes neurais artificiais e naive Bayes.

e Aprendizado nao supervisionado: Nesse caso, utiliza-se dados nao etiquetados, e o
objetivo do aprendizado é encontrar padroes ou caracteristicas latentes dos dados

que permitam regrupéa-los em categorias nao definidas previamente.

e Aprendizado por refor¢o: Baseia-se na interagdo de um agente e um ambiente. O
agente toma decisoes seguindo uma politica nesse ambiente, que influenciam sua
transicao de estados e a recompensa ganha a cada acao. O objetivo entao é de
encontrar uma politica 6tima, ou seja, que maximize a recompensa ganha pelo

agente.

Este ultimo tipo de aprendizagem é apropriado para a utilizacao no desenvolvimento de
uma lei de controle para navios, visto que a situacao se enquadra na interacao entre um
agente (controle do navio) e um ambiente (mar), e as decisoes sao os diferentes comandos

possiveis (propuls@o e angulo de leme).
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3.2 Aprendizagem supervisionada

Nesta secao sao apresentados os métodos de Aprendizagem Supervisionada que foram

utilizados neste trabalho.

3.2.1 Redes Neurais Artificiais

3.2.1.1 Estrutura de uma Rede Neural

As Redes Neurais Artificiais (RNA) sdo modelos computacionais inspirados nas redes
neurais biologicas, originalmente inspirando-se no Sistema Nervoso Central dos animais,

notadamente no cérebro e no funcionamento dos neurdnios e suas conexoes.

O modelo de redes neurais artificiais é construido através da interconexao de neuroénios
artificiais para a construgao de uma rede neural (neural network), a qual é posteriormente

treinada e utilizada para resolver um problema especifico.

Nesse sentido, o neurdnio artificial é a entidade central na concepgao de Redes Neu-
rais, pois é o elemento fundamental no qual a arquitetura dessas redes se baseia. A
estrutura de um neurdnio artificial com entrada x € R% é composta de um vetor de pesos
W = [wy,wy, ..., wy|, um viés b e uma fungao de ativagdo, que pode ser linear, tangente
hiperbolica, ReLU, etc. O funcionamento do neur6nio no passo direto (forward pass)
pode ser dividido em duas partes: pré-ativacao e ativagao. A pré-ativacao consiste na
multiplicagdo da entrada x = [x1, ..., x4]" pelo vetor de pesos w e subsequente soma so
viés b, ou seja, w X x + b. A ativac@o consiste entdo na passagem desse resultado pela
fungao de ativacao para obter a saida do neurénio. O diagrama da Figura [2] ilustra esse

funcionamento.

funcao de

entradas L
ativacao

saida

Figura 2: Estrutura de um neurdnio artificial
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As redes neurais sao modelos flexiveis e os neurénios artificiais podem ser organizados
de varias maneiras, dependendo da aplicagao especifica. No entanto, a maioria das redes
neurais ¢ estruturada em camadas, que sao conjuntos de neurdnios que nao compartilham
nenhuma conexao. Nesse caso, o calculo flui sequencialmente de uma camada para a
proxima, da entrada x para a saida y, interconectando-se os neurénios (N;;) em confi-
guragoes como exemplificado na Figura [3] onde o nimero de camadas [ e de neurdnios
por camada n; varia dependendo da aplicacao e da complexidade do problema. Quando

temos mais que duas camadas em uma RNA costuma-se falar entdao em Aprendizagem

Profunda (deep learning, em inglés).

Como esse tipo de rede nao inclui nenhum ciclo em seu grafico computacional, ele é
chamado de rede feedforward. Cada camada em uma rede neural feedforward pode ser
interpretada como uma fungao em si e em toda a rede como composicao dessas fungoes.

Como exemplo, se f) ¢ a funcdo implementada pela camada [ e temos trés camadas na

rede, podemos escrever f(x) = f&(f@(fW(z))).

saidas
U1

Yo

camada 1 camada [
camada 2 ou de saida

Figura 3: Arquitetura de uma Rede Neural

Além das redes feedfowards, existem redes neurais de variados tipos: convolucionais
(CNN), Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNN), entre
outras, as quais fogem do escopo deste trabalho. As RNAs podem ser utilizadas para

resolver problemas de aprendizado supervisionado, nao-supervisionado e como parte da

solucao de aprendizado por refor¢o, como detalhado nas segoes [3.4.4.3| e [3.4.5.1]

Na préxima secao os detalhes do mecanismo de aprendizado de RNAs sao abordados.
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3.2.1.2 Aprendizagem

De maneira geral, uma rede neural que mapeia uma entrada x para uma saida y tem
como objetivo aproximar uma func¢ao y = f*(z). A saida da RNA pode ser escrita com um
conjunto de parametros 0 : § = f(x;60), e o objetivo da etapa de aprendizado é encontrar
o conjunto de parametros 6 que melhor aproxima f*(z). Esse objetivo pode ser traduzido
como a minimizag¢ao de uma fungao de perda (ou fungao de custo, loss function em inglés)

L(z,y,0), que fornece uma medida da diferenca entre f(z,0) e f*(x).

Um exemplo recorrente utilizado como funcao de custo é o erro quadratico médio
(EQM, ou MSE em inglés):

L(ﬁ,y,@) = (y - f(x,y,Q)Q) : (31)

Entretanto, a avaliacao do modelo é realizada geralmente através da esperanca da
funcao de custo afim de avaliar o melhor fit de um conjunto de dados com o modelo.

Dessa maneira, define-se a funcao de custo como sendo a esperanca matematica da perda:

J(0) = E[L(z,y,0)] . (3.2)

A RNA “aprende” a aproximar-se de f*(z) atualizando seus parametros ¢, geralmente
utilizando o método de otimizacao chamado gradiente descendente. Tal método atualiza
0 gradualmente na direcao inversa do gradiente da fun¢ao de custo em relacao a 6, para

buscar a minimizacao de tal custo.

0 0—eVJ@) . (3.3)
Existem também métodos derivados do gradiente descendente como o método de Adam
(15), o qual é utilizado posteriormente nesse trabalho.

Esse método pode ser aplicado sem perda de generalidade em casos onde a fungao
y = f*(x) ndo é conhecida, mas é conhecida uma fungao custo, ou fungao objetivo, a qual

é funcao dos estados e deseja-se minimizar. Detalhes sobre o processo de aprendizagem

por redes neurais utilizando APR sao apresentados nas secoes [3.4.4.3| e [3.4.5.1]
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3.3 Processos de Markov

3.3.1 Cadeias de Markov

Os processos de Markov descrevem processos estocésticos caracterizados pela propri-
edade markoviana: “O futuro é independente do passado dado o presente”. Os processos
de Markov sao utilizados para descrever modelos estocasticos de transicoes de estados em
que a probabilidade de transicao de um estado presente para um estado futuro s6 depende

do estado presente. Tem-se entao:
P(St-l—l | St) = P(St+1 | S1,59, 53, - - . 7St)v (3-4)

onde P(S;11 | S¢) representa a probabilidade de transi¢cao do S; para o estado Siy1. A
propriedade markoviana diz entao que um estado S; captura toda informacao relevante
do histérico de estados anteriores (Si, S, ..., S;_1) e é suficiente para determinar a proba-
bilidade de transi¢ao para o proximo estado S, 1. Um processo de Markov (ou cadeia de

Markov) é entao definido pela dupla < S, P >, onde:

e S ¢é o conjunto de estados possiveis;

e P ¢é a matriz de transigao de estados, onde Pyy = P(S;11 = 5" | S; = s).

A matriz de transicao de Markov para n estados possiveis é definida como:

P = . (3.5)
P P ... P

3.3.2 Processos de Recompensa de Markov

Por extensao, um Processo de Recompensa de Markov (PRM) é um processo marko-
viano onde as transigoes de estados estao associadas a uma recompensa R. Tal processo

é definido entao pela quadrupla < S, P, R,y >, onde.

e S, P sdo como descritos anteriormente (vide segao |3.3.1));
e R ¢ a fungao de recompensa, Ry = E[R; + 1 | S; = s];

e 7 € [0,1] é um fator de desconto.
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Um PRM visa avaliar um conjunto de transi¢oes segundo uma métrica de recompensas
para cada transi¢do. Para tanto, uma fungdo conhecida como retorno (Gy), avalia o

conjunto de recompensas para cada etapa de transicao:
o
Gt = Z’ykRH-k-i-l . (36)
k=0

O valor de v pondera as recompensas futuras em uma avaliagdo no presente, ou seja a
recompensa R recebida na (k+1)-ésima transicio tem valor v*R. Ele garante a conver-
géncia de recompensas acumuladas em processos que possuem horizonte infinito (ndo tem
fim previsto). De uma forma geral, se 7y é proximo de 1 temos uma avalia¢ao ponderada
no futuro muito longo, se v é proximo de 0 temos avaliacao pautada no futuro muito

proximo.

Cada estado de uma cadeia de Markov associada a um PRM ¢ associado a uma fungao

de valor de estados V' (s) que da o valor de longo-prazo do estado, e ¢ definida por:
V(s) =E[Gy | S; = s] . (3.7)

O valor de V(s) pode pode ser reescrito como fungao da recompensa imediata e da re-
compensa futura:

V(s) =E[Rir1 + 9V (Ser1) | Se = s] . (3.8)

Como a transicao de estados esta associada a uma probabilidade de transicao, podemos

reescrever a fungao de valor como se segue:

V(s)=Ro+7)_ PuV(s). (3.9)

s'eS

A figura a seguir ilustra essa transicao a recompensa associada e a funcao de valor

correspondente.

Figura 4: Representagao de um PRM

A equacgao de Bellman ¢ utilizada para definir o valor de V(s) associados para todos

os estados de uma cadeia markoviana de um PRM:

v=R+~yPv. (3.10)
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A equacao pode ser resolvida no caso de PRM, sendo definida como:

v=(I—-vP)'R. (3.11)

3.3.3 Processo de Decisao de Markov

Um processo de decisdo de Markov (PDM) é um processo de controle estocastico em
tempo discreto. Ele fornece uma estrutura matematica para modelar a tomada de decisoes

em situagoes em que os resultados sao parcialmente aleatérios.

PDMs sao utilizados na modelagem e formulacao de problemas de APR onde o am-
biente é totalmente observavel. PDMs sao uma extensao de um PRM onde as transicoes
estao associadas & agoes tomadas antes da transicao. Um Processo de Decisao de Markov

(PDM) é definido como a quintupla < S; A, P, R,y >, onde:

e S é o conjunto de estados possiveis;

e A é o conjunto de agoes que o agente pode tomar;

P ¢ a probabilidade de transi¢ao de estado p(s,a, s');

e R ¢é a recompensa recebida pelo agente, definida pela fungao r(s,a) : S x A — R;

v é o fator de desconto.

Um processo de decisao de Markov possui a propriedade markoviana, ou seja todas as
transicoes de estado dependem somente do estado atual e da acao tomada pelo agente,
ou seja 0 processo nao possui memoria (vide se¢ao |3.3.1)). No escopo de um PDM, temos
entao:

P(sp1 | st a) = P(St1 | 81,82, .., 8, a1, a2, .5 ay) (3.12)

O objetivo ¢é escolher uma politica 7 que maximize algumas fungdes cumulativas das
recompensas aleatorias, tipicamente uma funcao G; que computa a soma de recompensas
esperada em um horizonte potencialmente infinito. Uma politica 7 é uma distribuicao de

acoes realizadas para um dado estado:
m(a|s)=PAr=s|S=5s). (3.13)

Uma politica define totalmente o comportamento do Agente em um determinado ambi-

ente.
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Dado um PDM M = < S, A P, R,y > e uma politica m, a sequéncia de estados S é um
processo de Markov em < S, P™ > e a sequéncia de estados e recompensas < S, P™ R, ~v >
define um PRM. Onde

PL, =) w(a)PL (3.14)

acA

R} =) w(a)R? . (3.15)

acA
No caso do PDM, a funcao de valor, V(s) apresentada na se¢ao anterior, é redefinida

como sendo a esperanca do retorno (G; comecada no estado s e seguindo a politica 7:
Vi(s) = E.[Gy | S; = 5] . (3.16)

Uma nova funcao que avalia as agoes tomadas em um determinado é definida, a fungao
de valor da agdo Q. (s,a) é a esperanga dos retornos comegando no estado s e realizando

a acao a, quando seguindo a politica :
Qr(s,a) =E; Gy | S =5, A =al . (3.17)

Ambas as funcoes de valor da agao e a de valor do estado podem ser reescritas de forma

recursiva, como foi feito na se¢ao anterior:

VTI—(S) = ]EW[RH-I + WVF(S}H) | St = S] s (318)

Qn(& a) = Eﬂ'[Rt—i-l + 'Yer(StH, At+1) | Sp =5, A = Cl] . (3-19)

As equacoes de Bellman podem ser reescritas para cada uma das funcoes, e representam
o valor para as fungoes para um estado genérico s. As figuras a seguir ilustram o processo
para o calculo das equagoes de Bellman. Na figura da esquerda, o valor de V. é associado
a probabilidade da tomada de uma agao a que é fun¢ao de uma distribuigao de 7(a | s).
Na figura da direita, o valor de Q.(s,a) é dependente da recompensa imediata r e da

fungao de valor associada ao novo estado de transicao, v, (s).

v(S) + s Gr(s, a) < s, a
r

Gx(s; a) < a ve(s') s

Figura 5: Representagao de um PDM, a esquerda, a dependéncia do valor de V. , a direita,
a dependéncia do valor de Q,(s,a).
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Em sintese tem-se que:

Va(s) =Y m(a | 5)Qq(s,a) (3.20)

acA

Qx(s,a) = RE 4+~ PLVA(S) . (3.21)

s'eS
Usando as duas equagoes anteriores pode-se escrever as fungoes de valor de estados e de

valor de acoes de forma recursiva:

Va(s) =Y m(a|s)(RE+7>  PLVa(s)), (3.22)

a€A s'eS

Qr(s,a) = R+~ Z ot Z m(ad | )Qx(s,d) . (3.23)

s'esS a’'€eA
Pode-se entao definir que a funcao de valor de estados e de agoes 6tima é aquelas cujos

valores de V.(s) e Q.(s), respectivamente, sao maximos sobre todas as politicas:

Vi(s) = max Ve(s), (3.24)

Q.(s,a) = max Qx(s,a) . (3.25)

Toda politica 6tima alcanca a melhor performance em termos das duas fungoes de valores.
E a busca pela politica 6tima é o que define a motivacao da aprendizagem, pois nao existe
uma solugao geral para a equacao de Bellman, e a maioria dos problemas ¢ solucionado

por solugoes iterativas como nos algoritmos de Iteracao de Valor, Iteragao de Politica,

Q-learning e SARSA.

3.4 Aprendizagem por Reforco

A Aprendizagem por Reforco (APR) tem como objetivo geral ensinar a realizagao
de uma tarefa a um Agente por meio de decisdes sequenciais tomadas por ele (Sutton e
Barto(16)). A cada iteracao, o agente observa um estado (s € S) que o Ambiente fornece,
toma uma agao (a € A) nesse Ambiente que causa uma transigdo desse estado para um

outro (s" € S) e recebe uma Recompensa (r € R) em virtude dessa agao.

Dessa maneira, quando os problemas de APR s@o formulados com probabilidades de

transicao bem definidas, eles constituem um PDM, que se baseia na quintupla
<S,A PR,y > (cf. item [3.3.3).
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Ambiente

estado,

acao
recompensa

Agente

Figura 6: Cenério geral de um problema de APR
3.4.1 Objetivo principal da APR

Dada a estrutura do problema, o objetivo dos algoritmos de APR é encontrar politicas
Otimas que maximizem a recompensa acumulada. Essas politicas definem a ac¢ao que o
agente deve tomar dado o estado que ele se encontra (m(s) : S — A). As recompensas
dadas pelo ambiente servem para moldar o comportamento do agente, entao a simples
concepgao das recompensas ja constitui sozinha um problema complexo a ser resolvido, e
diversas heuristicas podem ser usadas para defini-las, pois a politica 6tima a ser encontrada

pelo agente depende fortemente delas.

Como mostrado na secao anterior, o PDM possui métricas de valor de estados e de
acoes, que traduzem a esperanca da recompensa seguindo certa politica. Ora, encontrar
a politica 6tima 7" pode se resumir entao a encontrar a politica que maximize tais mé-
tricas. Quando tem-se o conhecimento completo do PDM, inclusive das probabilidades
de transigao de estados (ou se ela é deterministica), pode-se aplicar métodos de Pro-
gramacao Dindmica para encontrar 7*. Outra opc¢ao sao os métodos que aproximam a
funcao @), durante a aprendizagem, que pode ser usada posteriormente para definir a
politica, escolhendo-se sempre a acao que maximiza Q no estado atual. Métodos bastante

utilizados e que tem isso como base sao o Q-learning e suas variantes.

3.4.2 Programacao Dinamica

Quando tem-se um modelo definido que descreve o comportamento do ambiente como
um PDM (geralmente suposto finito) e o conhecimento das probabilidades de transigao de
estados, existe uma colegao de algoritmos que podem ser usados para encontrar politicas
6timas, a qual é chamada de Programagao Dinamica (PD). Sua aplicagdo, no entanto, é
limitada em APR dada sua premissa de um modelo descritivo perfeito do ambiente, e seu

custo computacional elevado (16).

A PD, e mesmo a APR em geral, utiliza as fungoes de valor (equagoes el3.17)) para
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organizar e estruturar a busca por politicas melhores. Isto ocorre pois ao encontrar-se as

funcoes de valor 6timas - equacoes e - a politica 6tima 7* também é encontrada:

m*(s) = arg mSX(VW(s)), Vs € S. (3.26)

3.4.2.1 Avaliagao de Politica

Primeiramente considera-se o problema de computar a funcao de valor do estado
V. para uma politica arbitraria . Toma-se entdao a equagao [3.22] Se a dindmica do
ambiente é conhecida, isso quer dizer que R? e PZ, sao conhecidos. Portanto, encontrar
V. se resume a resolver um sistema de equagoes lineares com o nimero de equacoes e
de incognitas iguais ao numero de estados. Porém, o nimero de estados frequentemente
é elevado, o que torna inviavel a resolucao desse sistema. Prefere-se entao uma solucao
iterativa para esse problema, a qual aproveita a equagao para atualizar a estimativa

da fungao de valor do estado. Tem-se entao:

Vir1(8) = Ex[Rip1 +7Vi(Siq) | St = 3]
—Z (a|s) Ra—|—72P Vi(sh) . (3.27)

acA s'es

Mostra-se que Vi, — V; para k — oo com as mesmas condi¢oes que garantem a
existéncia de V; (16). Para obter-se a estimagao, deve-se entdo definir um limite de
precisao 6 como critério de parada do algoritmo iterativo de Avaliacao da Politica mostrado

a seguir:

Algoritmo 1: Avaliagao de Politica iterativa (16)

Entrada: 7, a politica a ser avaliada

Dados: um pequeno limite # > 0 delimitando a precisao da estimagao

Saida: V', estimagao de V.

Inicializar V (s) arbitrariamente para todos estados, exceto o terminal onde V' = 0

repita
A+0

para cada s € S faca
v+ V(s)
Vi(s) = 2 mlals)(RE + 722, Py V(s))
A < max(A, v — V(s)|)

fim

até A < 0,
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3.4.2.2 TIteracao de Politica

Uma vez obtida a estimacao de V., e sabendo-se as probabilidades de transicao de
estados, a politica atual pode ser melhorada simplesmente buscando-se as agoes que levam
a estados s com o maior V,(s) possivel. O algoritmo que se aproveita dessa estratégia

para melhorar a politica é mostrado abaixo:

Algoritmo 2: Iteracao de Politica (usando avaliagao de politica iterativa) (16))
Saida: m~7* eV =V,

Inicializagao: V(s) € R e m(s) € A arbitrariamente Vs € S

repita
1. Avaliacao de Politica:

repita

A0

para cada s € S faca
v+ V(s)

Vi(s) <= 2o mlals) (RS +7 22, PLV(s))
A+ max(A, v — V(s)])

fim

até A < 0,

2. Melhorar Politica:

politica__estavel <— verdadeiro

para cada s € S faga
altima__acao < 7(s)

7(s) = argmax,(R2 + v, P4V (s))
Se dltima__acao # 7(s), entao politica _estavel < falso

fim

até politica _estavel,

3.4.2.3 Iteragao de Valor

A Tteracao de Politica, apesar de convergir para a politica 6tima no limite, pode
ser demasiadamente custosa em processamento, uma vez que cada iteracao realiza uma
Avaliacao de Politica, o que acaba tornando o algoritmo ineficiente em certos casos. Porém,
se ao invés de se aguardar a convergéncia da Avaliagao de Politica, para-se o algoritmo
nas primeiras iteragoes, pode-se haver uma reducgao significativa no custo computacional
do algoritmo, sem perder a garantia de convergéncia da Iteracio de Politica (16). E o caso

da Iteracao de Valor, onde para-se a Avaliacao da Politica apds apenas uma atualizacao
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de cada estado. O algoritmo detalhado é mostrado a seguir:

Algoritmo 3: Iteragao de Valor (16)
Dados: um pequeno limite # > 0 delimitando a precisao da estimagao

Saida: 7~ 7
Inicializar V'(s) arbitrariamente para todos estados, exceto o terminal onde V' = 0

repita
A<+ 0

para cada s € S faga
v V(s)

V(s) ¢ max, (RS + 73y PLV(s))
A+ max(A, v — V(s)])

fim

até A < 0,

Retornar 7(s) = arg max,(R? +v>_, P2,V (s))

3.4.3 Meétodos de Monte Carlo

Os métodos de Monte Carlo (MC)(16), contrariamente aos de Programagao Dinamica,
nao assumem conhecimento completo do ambiente (s@o ditos Model-Free), e requerem so-
mente amostras experimentais de sequéncias de estados, agoes e recompensas de interacoes
com o ambiente (simuladas ou reais). Tais métodos sao interessantes pois nao requerem
conhecimento prévio da dinamica do ambiente, porém conseguem ainda assim alcancar
politicas 6timas. Além disso, aprender a partir de experiéncias simuladas (amostras de
transigoes) permite o emprego de tais métodos em uma vasta gama de situagoes onde gerar
as distribuigoes completas do ambiente de forma explicita ¢ impossivel ou extremamente

complexo.

Tais métodos resolvem o problema de APR baseado em médias de amostras de retorno.
As tarefas consideradas para os métodos de Monte Carlo sao episodicas (a experiéncia
¢ dividida em episédios e todos episddios eventualmente terminam independentemente
das agoes selecionadas), para assegurar que retornos bem definidos sao disponiveis. Os
estimadores de valor e a politica sao atualizados entao somente no final dos episédios.
Portanto, os métodos MC sao offline, incrementando a cada episédio, ao contrario dos

métodos online, que atualizam-se a cada passo da simulagao.

Para aprender, utiliza-se uma adaptacao da generalizacao da Iteracao de Politica. Ao
contrario da PD, que usa o conhecimento do PDM para computar funcoes de valor, MC

utiliza amostras de retorno do PDM para aprender as fungoes de valor. Como descrito
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na se¢ao de Programagdo Dinamica (3.4.2)), considera-se primeiramente o problema da
Avaliagao de Politica (computando-se V, e @, para uma politica arbitréaria e fixa ), para
posteriormente aprimorar a politica e utilizd-la no problema de controle. Cada uma dessas
ideias extraidas da PD sao estendidas para o caso onde somente amostras de experiéncia

estao disponiveis (Monte Carlo).

3.4.4 Aprendizagem por Diferencas Temporais

A aprendizagem por Diferengas Temporais (DT)(16) combina ideias dos métodos de
Monte Carlo com Programagao Dinamica. Os métodos de DT aprendem diretamente da
simples experiéncia sem um modelo da dindmica do ambiente, como os métodos de MC.
Porém, assim como na PD, a atualizacao dos estimadores em DT é feita em parte baseada
em outros estimadores aprendidos (online), sem esperar um resultado final episodico.
Alguns métodos classicos de DT séo a Previsao por Diferencas Temporais (TD(0), TD()),
...), SARSA e Q-learning. Este ultimo é descrito em detalhes a seguir.

3.4.4.1 Q-learning

O algoritmo Q-learning (17) é um algoritmo de controle por DT dito off-policy, ou
seja, que nao segue a politica sendo otimizada na fase de aprendizagem (possui politica
propria durante essa fase). A formula de atualizagdo da estimagao da fungao de valor de

acoes € a seguinte:
Q(St7 At) = Q(Sta At) + Oz[RtH + 7m3x Q(St+1, a) - Q(St; At)]' (3-28)

Prova-se que neste caso, a funcao de valor de a¢oes aprendida, (), aproxima diretamente
Q)+, a fungao de valor de agoes 6tima, independentemente da politica sendo seguida (16]).
A condigao requerida para essa convergéncia é a de que o valor de todos os pares de
estado-agao continue a ser atualizado durante a aprendizagem. Por isso, a politica tem
um efeito que determina quais pares sao visitados e atualizados. Geralmente utiliza-se
uma politica chamada e-greedy, que com probabilidade £ escolhe aleatoriamente uma
acao a ser tomada, e com probabilidade 1 — ¢ escolhe a acao que maximiza a funcao
de valor de agoes ("ambiciosa"). Esta politica equilibra exploragao do conhecimento ja

adquirido (representado pela fungao de valor) e experimentagao de novas agoes (escolhidas
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aleatoriamente). O algoritmo detalhado de Q-learning ¢ mostrado abaixo:

Algoritmo 4: Q-learning (Controle por DT off-policy) (16])

Dados: taxa de aprendizagem « € [0,1], ¢ €]0, 1] pequeno

Saida: 7~ 7*

Inicializar (s, a) arbitrariamente para todos estados e agoes, exceto para o estado
terminal onde Q) = 0

para cada episodio faca
Inicializar S

para cada passo do episodio faca
Escolher A no estado S usando politica derivada de @ (p.ex. e-greedy)

Tome a agao A, observe R, S’
Q(S, A) < Q(S,A) + a[R + ymax, Q(5',a) — Q(S, A)]

S« 5
fim

fim

Retornar 7(s) = argmax, Q(s,a)

O algoritmo mostrado funciona muito bem quando tem-se estados e agoes discretos de
dimensao nao muito elevada, utilizando-se Q tabular. Em casos continuos, existe ainda
a possibilidade de discretizar estados e acoes. No entanto, conforme a quantidade de
estados e a¢bes aumenta, a complexidade do algoritmo também cresce. A atualizacao de
@ pela visita a todos pares de estado-acao torna-se custosa, e a convergéncia do algoritmo,
lenta. Além disso, quando tem-se estados com varias dimensoes, o tamanho da tabela
que armazena (Q torna-se excessivamente grande, e o problema torna-se dificil de resolver.
Possiveis solugoes para tais problemas utilizando principios do Q-learning sao mostradas

a seguir (Q-learning aproximado e Deep Q Network).

3.4.4.2 Q-learning aproximado

O Q-learning aproximado(16) utiliza uma aproximacao de func¢ao para a func¢ao de
valor de agoes (). Ao invés de se utilizar uma tabela para armazena-la, aproxima-se ()
por uma forma funcional parametrizada com vetor de pesos w € R%. Denota-se tal apro-

ximagao por Q(s,a,w) ~ @Q,(s,a). Essa aproximacao pode ser a mais variada possivel,

podendo ser:

e um modelo de regressao linear, onde w denomina os pesos da funcao linear;

e uma arvore de decisao, onde w define os nos e valores das folhas;
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e ou até mesmo uma RNA multi-camadas (vide segdo [3.2.1)), onde w é o vetor dos

pesos dos neurdnios em todas as camadas.

Tipicamente, o ntimero de pesos (dimensao de w) é bem menor que o namero de estados:
d < |S|. Portanto, mudar um peso afeta o valor estimado de varios estados, o que por
consequéncia, faz com que a atualizacao de um estado seja generalizada pelo modelo e
afete o valor de varios outros. Tal generalizacao é interessante pois torna o aprendizado
potencialmente mais poderoso porém também mais dificil de controlar e entender. Outro
aspecto interessante é que tais métodos de APR permitem sua aplicagao para problemas

parcialmente observéveis (nos quais o estado completo nao é disponivel para o agente).

3.4.4.3 Deep Q Network

Deep Q Network (DQN) é uma arquitetura de APR proposta por Mnih et al.[(18)
para aprender a jogar 49 jogos classicos de Atari 2600, utilizando uma observac¢ao do
estado pelo agente por meio somente da visualiza¢ao do jogo (pixels que constituem a tela
do jogo). Para tal, os autores aproximam a fungao de valor de agao 6tima por meio de
uma Rede Neural Convolucional (CNN) que recebe a observagao do estado como entrada
e retorna os valores de acao como saida. Os autores propoem também uma rotina de
treinamento por replay de experiéncia, ou seja, pegam amostras aleatorias de um conjunto
de passos experimentais para utilizar no treinamento da RNA, eliminando a correlacao na
sequéncia das observagoes (que é prejudicial para o treinamento da RNA) e suavizando as
mudancas na distribuicao de dados. Portanto, durante a aprendizagem, as atualizacoes do
Q-learning sao feitas com amostras (ou minibatches) de experiéncia (s, a,r,s'), retirados
uniformemente de maneira aleatoria das amostras experimentais armazenadas em U (D)
(replay). A fungao custo utilizada na atualizagao dos pesos 6; da Rede Q (Q Network,

em inglés) na i-ésima iteragdo do algoritmo é a seguinte:

2
Lz(ez) = IE(s,a,r,s’)NU(D) |:<T + W/Inaa;XQ(SC a/; 91_) - Q(S7 a; 91)) :| ) (329)

onde:

v é o fator de desconto;

0; sao os parametros da Rede Q na ¢-ésima iteragao;

0. sdo os parametros da RNA utilizada para computar o alvo - max, Q(s',a’;0;) -

na ¢-ésima iteracao.
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O treinamento da RNA é feito com o método de Adam (15). Os parametros da RNA que
computa o alvo (#;") sdo somente atualizados com os parametros da Rede Q (6;) a cada
C passos, sendo fixos entre atualizagoes individuais, o que é denominado de Atualizagao
Dura do Modelo Alvo (Hard Target Model Update, em inglés). Outra opgao que pode
ser utilizada, a Atualizagdo Mole do Modelo Alvo (Soft Target Model Update) atualiza
os parametros a cada iteracao do algoritmo, por meio de uma atualizacao que pondera a
importancia dada ao modelo anterior e o novo segundo a equagao a seguir (C é o parametro

que define essa ponderagao):

0. =Cx0 +(1—-C)x6;. (3.30)

Mesmo se a DQN atinge bons resultados em sistemas com dimensoes elevadas, o
espaco de acoes do método ainda é discreto. No entanto, muitas tarefas de interesse,
especialmente de controle (inclusive a tarefa analisada neste trabalho), possuem espago
de agoes continuo. Se a discretizagao de tal espago de agoes ¢ muito fina, o espaco de agoes
torna-se muito grande e a complexidade do problema aumenta, dificultando a convergéncia

do método.

O interesse da aplicagao desse algoritmo para a esse trabalho é que ele pode ser
utilizado para a construcao de uma politica de controle de leme e de propulsao discreta,
utilizando uma aproximagao para a fungao com relativamente poucos parametros da rede
neural. A contrapartida desse método é que ele deve ser aplicado em conjunto com a

discretizacao das agoes de leme e propulsao.

3.4.5 Gradiente de Politica

Os métodos de Gradiente de Politica (GP) sao diferentes dos expostos anteriormente
na medida em que eles nao utilizam mais uma estimativa da fungao de valor de agoes
para constituir uma politica (selecionando-se agoes que maximizem a fungao). Ao invés
disso, tais métodos aprendem uma politica parametrizada que pode selecionar a¢oes sem
consultar uma funcao de valor. No entanto, uma funcao de valor pode ainda ser usada
para aprender o parametro da politica (16)). Similarmente ao procedimento de gradiente
descendente descrito na se¢ao[3.2.1.2] que fala sobre o processo de otimizagao das RNAs, os
métodos de GP realizam o gradiente ascendente, utilizando uma métrica de performance
ao invés de custo. Por isso, para maximizar o desempenho, sobe-se o gradiente ao invés

de descé-lo, como é feito com o custo. Analogamente & equacao [3.3 o GP segue entao a
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seguinte regra geral de atualizagao (com J(€) sendo agora uma medida de performance):
0« 0+eVJ@O) . (3.31)

Costuma-se denominar a arquitetura ator-critico como métodos que aprendem aproxima-
¢Oes para ambas a politica e fungao de valor. Ator refere-se a politica aprendida, enquanto
critico é uma referéncia a funcao de valor estimada, geralmente uma funcao de valor de

estado.

3.4.5.1 Deep Deterministic Policy Gradient

O método Deep Deterministic Policy Gradient (DDPG), proposto por [Lillicrap et
al.[(19), é comumente aplicado para ambientes em que o espago de agoes é continuo, como

¢ o caso do problema de controle de agoes de leme e propulsao em navegacao.

Tal método apoia-se na arquitetura ator-critico, a qual é usado para representar a
fungao de politica independentemente da fungdo de valor. A estrutura da fungao de
politica é conhecida como o ator e a estrutura da fungao de valor é referida como critico.
O ator produz uma acao, dado o estado atual do ambiente, e o critico produz um sinal
de erro DT (Diferenga Temporal), dado o estado e a recompensa resultante. A saida do
critico impulsiona a aprendizagem tanto no ator quanto no critico. O diagrama a seguir

ilustra essa estrutura.

AN
Ator
Poh&ga

eryo DT
Funcao de Acdo

Valor
ritico

Ambiente

Estado

Figura 7: Diagrama ator-critico

No caso do DDPG utilizamos um algoritmo de politica deterministica, ou seja,

a = po(se0") (3.32)

ao invés de my(als) = P(als, ) como nos casos estocasticos anteriores. Dessa forma o
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DDPG o gradiente é calculado apenas sobre o espaco de agoes, o que exige um numero
de amostras menor que no caso estocastico. Entretanto uma politica deterministica nao
explora plenamente o espago de estados, dessa forma, para superar essa limitacgao, utiliza-

se a adicao de um processo de ruido N;. Dessa forma tem-se:

a = pe(s¢|0") + N . (3.33)
Um critico é usado para avaliar a politica estimada pelo ator segundo o erro de DT

Yi = re1 + YQ(St11, app1) — Q(81, ay) (3.34)

Assim como no caso do DQN é utilizado a técnica de replay de experiéncias para tirar

a correlacao das sequéncias de observagoes.

Atualizar diretamente o seu ator e os pesos criticos da rede neural com os gradientes
obtidos a partir do sinal de erro de DT calculado faz com que seu algoritmo de aprendizado
divirja (ou seja, ndo aprenda). Para contornar esse problema utiliza-se um conjunto de
redes-alvo (target, em inglés) para gerar os alvos para o calculo de erro de DT o qual
regulariza o algoritmo de aprendizado e aumenta a estabilidade da solucao, similarmente
como é feito para o método DQN. As equagdes para o alvo DT yi e a funcdo de perda

para a rede do critico sao as seguintes, respectivamente:

Yi =1 +7Q (Si41, M’($i+1|9“/)|9q) , (3.35)
L= 30— Qsearlt?)?) (3.36)

i

Nessa equag¢ao, um minibatch de tamanho N foi amostrado a partir do buffer de
reproducao, com 7 o indice referente a amostra. O alvo para o calculo do erro de DT, y;,
é calculado a partir da soma da recompensa imediata e das saidas das redes-alvo do ator
e do critico, tendo pesos 6* e 09 respectivamente. Entdo, a saida do critico pode ser

computada como sendo Q(s;, a;|0%).
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O pseudo-codigo que define o DDPG é demonstrado a seguir.

Algoritmo 5: Deep Deterministic Policy Gradient (19)

Inicializar 7 << 1
Inicializar a rede do critico Q(s, a|f#?) e a rede do ator ju(s|@*) arbitrariamente com
pesos 0% e O+

para cada episdodio = 1, M faca
Inicializar o processo aleatoério de exploracao N,

Receber o estado inicial de observacao s;

para cada iteracao t= 1, T faca
Escolher a; = pg(s|60") + N; usando politica de exploragao e ruido.

Tome a agao ag, observe ry, S¢1q

Armazenar a transigao (s;, as, ¢, S¢+1) no minibatch By

Extrair de B; uma amostra aleatéria de contendo N transi¢oes
(8, @iy i, Siv1)

Defina: y; = r; + Q' (si41, 1/ (5:11]0)[0)

Atualizar o critico minimizando L = & Y. (y; — Q(s4, a;/69)?)

Atualizar a politica do ator utilizando o gradiente da amostra de politica:
Voud =~ Eyips [VaQ(s, 0)|s=sia=p(s0) * Vorii(s)]s=s,]

Atualizar as redes "targets":

09 69 + (1 — 7)0%

O O+ (1 —7)0"

fim
fim

O interesse do algoritmo de DDPG para esse trabalho reside no fato de que ele pode
ser utilizado para construir uma politica de decisao continua, a qual pode ser utilizada

para a construcao de uma lei de controle de propulsao e leme.

3.5 Transferéncia de Aprendizado

A Transferéncia de Aprendizado (TA), ou Transfer Learning (em inglés), é uma técnica
de Aprendizado de Méquina onde um modelo ja treinado em uma tarefa é reaproveitado
para uma outra tarefa relacionada(20). A técnica é muito ttil em casos onde o treinamento
dos modelos do zero é longo e demanda muitos recursos, como por exemplo no treinamento
de Redes Neurais Convolucionais para reconhecimento de imagens, pois muitas vezes é

possivel reduzir drasticamente o ntamero de iteragoes da fase de treino simplesmente ao
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utilizar-se o modelo ja treinado para aprender a nova tarefa.

Na Aprendizagem por Refor¢o, a TA também se preocupa com acelerar o processo
de aprendizagem, uma vez que os agentes de APR podem demorar muitos episodios re-
alizando exploracao aleatéria antes de conseguir desenvolver uma politica razoavel. A
aplicacao da TA torna-se entao interessante para problemas onde os episddios sao demo-
rados (simulagbes complexas e custosas), acelerando-se assim consideravelmente a apren-
dizagem da politica. Duas das principais formas de transferir o aprendizado em APR sao

mostradas a seguir.

3.5.1 Métodos de Ponto Inicial

Os Métodos de Ponto Inicial (MPI) utilizam um modelo ja aprendido como solugao
inicial do aprendizado da nova tarefa. Tal solucao é relativamente simples visto que o
modelo se atualiza para a nova tarefa através da experiéncia (treino) por meio da propria
APR. Comparado a configuracao inicial aleatoéria ou em zero que é geralmente utilizada
pelos algoritmos de APR, tais métodos podem iniciar a aprendizagem em um ponto muito

mais proximo de uma boa solugao para o novo problema.

Existem algumas maneiras de aproveitar o modelo aprendido como solucao inicial,
porém em geral o algoritmo de APR utilizado é o mesmo em ambos os problemas (da
solucdo encontrada e o que se quer resolver). Algumas abordagens podem requerer um
mapeamento dos estados e acoes entre as tarefas, quando ha diferencas entre os ambientes

analisados.

3.5.2 Métodos de Imitacao

Os Métodos de Imitacao induzem escolhas de politicas aprendidas durante o apren-
dizado de outras tarefas. Apesar de nao causar mudancas diretas na solucao encontrada
para a tarefa a aprender como os MPI, a Imitacao afeta a aprendizagem produzindo dife-
rentes atualizagoes na politica ou fungao de valor. As decisoes por Imitacao podem levar
o agente mais rapidamente a areas mais promissoras do Ambiente se comparado & explo-
racao aleatoria geralmente realizada pelos algoritmos de APR. Uma opgao de Método de
Imitacao, por exemplo, substitui as a¢oes aleatorias de uma politica e-greedy pela escolha

da politica aproveitada.
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4 MODELO DINAMICO E SIMULACAO

Neste capitulo descreve-se brevemente a dinamica do navio considerado no estudo e

o Simulador TPN, para o qual propoe-se o controle.

4.1 Dinamica do navio

Nesta se¢ao apresenta-se um modelo dindmico simplificado que descreve o movimento
de navegacao de uma embarcacao. A analise desse modelo é essencial para a compreensao
dos resultados obtidos pelo simulador numérico, serve de base teérica para validacao da
coeréncia dos resultados obtidos pela APR, e é relevante para a deducao de parametros

de design do algoritmo.

O modelo de navio apresentado possui 3 graus de liberdade, deve navegar no plano
horizontal, e tem como hipo6tese principal a de que o navio possui baixa velocidade de até
3m/s (hipotese coerente com a navegagao em aguas restritas). Um modelo mais detalhado

de navegagao pode ser encontrado em (5) e em (21)).

Seja um sistema de coordenadas fixo na terra OXY Z e um sistema de coordenadas
fixa no navio oxryz, com a origem o fixa no ponto central da secao média da quilha da
embarcacao. O centro de gravidade G esta a distancia xg a frente do ponto o, ox é o eixo
longitudinal do navio direcionado para a proa, e oy é o eixo transversal, apontando para
o bombordo. O rumo da embarcacao v define o dngulo entre os eixos de proa e OX. A

figura [9] apresenta um diagrama simplificado do navio e seus sistemas de coordenadas.
As 3 equagoes diferenciais que definem a dindmica desse modelo sao:
(M + Mu)ll — (M + MQQ)U’/‘ — (M.I'g + MQG)’FQ = Xext,

(M + Mgz){} + (ng + MQ(;)T.’ + (M + Mll)'lﬂ" = Y’exta (41)
([z + M@ﬁ)f“ + (Mflfg + Mg@)(?] + U’f’) + (Mll — MQQ)UU = Nemta

onde M é a massa do navio, I, é o momento de inércia do navio, u e v sao as velocidades
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Figura 8: Diagrama do navio e seus sistemas de coordenadas

longitudinal e transversal, respectivamente, e r é a velocidade angular da guinada. Os
termos Mj; e Msy sao as massas adicionadas ao navio nas direcoes ox e oy, Mg € o
momento de inércia adicional do navio e Mys é a inércia acoplada adicional. N, €
o momento de Munks. O subscrito ext representa as cargas externas que podem ser

expressas em termos de diferentes fatores.

Xzt € decomposto como sendo:
Xemt - Xh + Xw + va + Xp + Xtug + XM; (42)

onde X, representa as forcas hidrodindmicas de nao potencial, incluindo as forcas de
manobra e corrente, X,,, X, representam as forcas de vento e de onda, respectivamente
X, representa os impulsores, forgas de hélice e leme, finalmente, Xy, ¢ Xj; representam
respectivamente a agao externa dos rebocadores e as for¢as devido a linhas de ancoragem.

Analogamente, podemos decompor Y,,; e N..;, sem perda de generalidade.

No escopo desse trabalho o navio foi simulado em condigoes de canal, ou seja na
auséncia de vento, ondas e corrente, e com forgas de navegacao e controle definidas apenas
pelas agoes de hélice e leme (sem rebocadores e amarras), simplificando as forcas externas
para as forgas de impulsores e forgas hidrodinamicas de manobra e resisténcia (velocidade

de corrente nula):

Xeact = Xh + Xpa
}/ea:t = Yh + }/;)7 (43)
Negt = N, + Np.

As equagoes fisicas que representam os esfor¢os hidrodinamicos de X}, Y, e N, fogem
do escopo deste trabalho, mas podem ser encontradas nos trabalhos em detalhes em (21)
e (22).
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A for¢a dinamica do leme Fp (a qual as forgas externas de indice p sdo fungoes

dependentes), responsavel pelo controle de guinada do navio é dada por:
Fr(¢) = 0.50A4,CL(¢) V2, (4.4)

onde p é a densidade da agua, A, é a area do leme, C'; é um coeficiente adimensional, ¢
o angulo efetivo do leme e V, a velocidade relativa de escoamento da édgua sobre no leme
(Figura @ Como observado, as forcas do leme dependem da velocidade de escoamento,
que esté diretamente relacionada a rotacao da hélice. Dessa forma, é intuitivo notar que
a embarcacao possui um potencial de controle de leme proporcional & rotacao da hélice.

Ou seja, as forcas do leme sao reduzidas quando o motor esta inoperante.

Figura 9: Diagrama de forgas de leme

Ja a forga de propulsdo (empuxo) de um propulsor azimutal fixo é definida como

sendo:

T,(Ja) = prEDEKr(J), (4.5)

onde p ¢é a densidade da 4gua, n, ¢ a velocidade de rotacao da hélice do propulsor, D, é o
diametro da hélice e K1 é a constante adimensional de torque do propulsor, que depende
do coeficiente de avango J4 e normalmente pode ser obtido através do gréfico Kr versus

J4 fornecido pelo fabricante do propulsor.

O detalhamento de como as fungoes externas de indice p sao fungoes das forcas de

leme e propulsdo pode ser encontrado em (22).

4.2  Simulador TPN

O Centro de Simulacao de Manobras TPN-USP é o maior Centro Brasileiro para
simulacao de Manobras de Navios. Este centro é composto por seis simuladores, trés

deles classificados como de missdao completa (sistema imersivo com proje¢ao virtual em



51

270°). A figura 10| ilustra uma sala do centro de manobras do TPN.

Figura 10: TPN: Sala de manobras de navios

A simulagao pode ser executada em modo de tempo real em uma ou varias cabines
simultaneamente (simulagao de um ou varios pilotos). O simulador é usado para avalia¢ao
de novos portos, operacoes, analise de risco, treinamento de pilotos e capitaes. O mesmo
software de simulacdo também pode ser executado no modo de tempo rapido (fast-time)
para proposito de analisar a trajetoria percorrida por embarcacoes pilotadas por contro-
ladores automaticos, situagoes nas quais nao existe a necessidade de simulagao em tempo

real.

O simulador pode ser resumido como um sistema de integragao Runge-Kutta de 4*
ordem, que integra um conjunto de 6 equacoes diferenciais que regem a dinamica do navio

em seus 6 graus de liberdade (X,Y, Z,ry,ry,7,).

O simulador é configuravel através de um arquivo externo, o qual define as caracteris-
ticas do navio a ser pilotado tais como as matrizes de massa, matrizes de massa adicional,
dimensoes espaciais, localizagao e tipo de atuadores, etc. O arquivo externo define tam-
bém as condigoes ambientais externas de navegacao, tais como a presenca e caracteristicas
dos ventos, correntes, ondas, etc. Para um maior detalhamento da influéncia das forcas

externas referir-se a e para maior detalhamento das equacoes em 6 graus de liberdade
referir-se a (21)).

Para este trabalho o navio considerado é conhecido como ANGRA, e cujas caracte-
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risticas sao detalhadas no apeéndice [A.]l O Navio apresenta apenas um leme azimutal
como superficie de controle, e um propulsor do tipo azimutal fixo de rotacao variavel.
As caracteristicas do leme e do propulsor sdo descritas também nas segdes [A.4] e [A.3]

respectivamente.

O simulador fast-time recebe como entrada os comandos de leme e de propulsao,
realiza a integracao numeérica nos 6 graus de liberdade e fornece como saida, a posicao e
vetor de velocidades do do navio em relacao ao ponto de origem fixo. Para este trabalho,
entretanto, como definido na se¢ao , apenas a posi¢ao absoluta do navio (Xaps, Yaps),

a velocidade absoluta (V;, V), o angulo de aproamento (), e a velocidade angular (6) sao

extraidos do simulador.

Os pardametros de entrada tem a forma vetorial do tipo Ay = [A;, 4,], onde A; é o
comando adimensional de leme e A, o comando adimensional de propulsao, de tal forma
que A; € [-1,1] e A, € [0,1]. Tais parametros tem uma relagdo proporcional direta com

o angulo de leme e a propulsao, de tal forma que:

Ay =1=T,=T">,

A, =0—T,=T"",

A =1 ¢p = ¢7™, (4.6)
Ai=0—¢r =0,

A= =1 ¢ = g™,

Os valores de T3, T ¢ip e ¢, sdo definidos nos apéndices e
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5 TRABALHOS RELACIONADOS

Nesta secao, os principais trabalhos que foram utilizados como base para elaboragao
da solugao proposta sao apresentados, e os topicos de maior relevancia para elaboragao

da solugao sao citados e descritos brevemente.

5.1 Ambiente de Simulagao

Nos trabalhos de |[Ahmed e Hasegawa((4)), o objetivo é controlar as ag¢des de voo de
um helicoptero. Neste contexto, o ambiente é o espago de estados do helicoptero durante
o voo. Para modelizar o ambiente, os autores utilizam uma etapa de identificacao do
modelo através de um voo manual sensoreado. Em seguida utiliza-se uma rede neural
para parametrizar as transicoes de estados a partir dos dados coletados. Finalmente, um
agente é treinado utilizando o ambiente virtual (modelo parametrizado) e posteriormente

testado no ambiente fisico real (voo).

No trabalho de [Abbeel et al.(23), o objetivo foi controlar um helicoptero em voo
invertido. A metodologia para modelizacao do ambiente foi parecida - primeiramente,
modelizou-se o ambiente através de dados captados de um voo. Nesse caso, porém,
utilizou-se um modelo paramétrico fisico na etapa de identificagao, e os parametros do
modelo foram identificados a partir de uma regressao linear dos dados de voo. O ambiente
(modelo) foi entao utilizado para o treinar o agente, que foi posteriormente validado em

VOO.

Em |Lau|(24), busca-se controlar um simulador de corrida de carros a partir de uma
rede neural usando APR profunda e DDPG. Nesse caso o ambiente nao necessita ser
identificado pois o proprio simulador é virtual e suficientemente rapido para realizar a

aprendizagem do algoritmo.

Finalmente, em Brockman et al.(25) propoe-se uma forma genérica para modelizar

ambientes virtuais utilizados em técnicas de aprendizado por refor¢o utilizando a bibli-
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oteca OpenAl gym. O objetivo é a padronizacao de conceitos relacionados a aplicacao
de algoritmos de aprendizagem. Busca-se também o compartilhamento dos ambientes em
uma plataforma global para que diversos membros da comunidade OpenAl gym possam
facilmente aplicar e comparar técnicas de aprendizado, fomentando assim o desenvolvi-

mento de algoritmos eficientes para um determinado problema.

5.2 Design da recompensa

A definigdo da recompensa é um aspecto fundamental na APR, como relata (24]),
diferentes fungoes de recompensa podem significar uma diferenga substancial no nimero
de etapas necessarias para a convergéncia do algoritmo, seja ele de APR Profunda ou
Q-learning aproximado. Em (23) e em (7)), propoe-se a aplicagao de uma funcao de custo
semelhante a utilizada nos problemas de controle classico utilizando LQR. Tal utilizacao
apresentou bons resultados em ambos os trabalhos. Para fins de convergéncia, entre-
tanto, como cita (24), recompensas com valores normalizados entre -1 e 1 tendem uma

convergéncia mais rapida para redes neurais em DQN E DDPG.

5.3 Redes Neurais e Hiper-parametros

Como demonstrado em (24), uma rede neural 2 camadas, utilizando o método de
DDPG, com a estrutura ator-critico-target, e foi capaz de controlar a conducao de um vei-
culo apoés 200 mil iteragoes. Para isso utilizou-se o método estocastico reversivel Ornstein-
Uhlenbeck. Os comandos abordados eram do tipo continuo em aceleracao, freio e diregao.
Observou-se como resultado final que o veiculo seguia uma trajetoria-guia com pequenas

oscilagoes de diregao.

Ja em Plappert([26]) apresenta-se o controle de diversos ambientes de controle conti-
nuo e discreto estruturados utilizando os moldes definidos por (25). Nesse contexto, um
péndulo invertido foi controlado utilizando o método DQN e uma rede neural de 3 cama-
das, em associagao a uma discretizagao das agoes para a formulacao e usando replay de
experiéncia para garantir a convergéncia . A partir de (26]) e de (24]) foram coletados os

hiper-parametros para a definicao da rede neural. Eles sao detalhados na tabela a seguir.
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Tabela 1: Hiper-parametros para a definicao da RNA

CartPole

Péndulo invertido

Simulador Carro

Espaco de Estados

Nuamero: 4

Tipo: Continuo

Ntmero: 3

Tipo: Continuo

Ntmero: 8

Tipo: Continuo

Espago de Agoes

Numero: 2

Tipo: Discreto

Nuamero: 1

Tipo: Continuo

Numero:3

Tipo: Continuo

Tipo de RNA

DQN com Replay de
Experiéncia e RNA
Alvo

DDPG: Ator-Critico,
Replay de Experiéncia
e RNA Alvo

DDPG: Ator-Critico,
Replay de Experiéncia
e RNA Alvo

Arquitetura da RNA

Sequencial,
Entrada: Estados
Camada 1: 16
Camada 2: 16
Camada 3: 16
Saida: Acgao

Ator: Sequencial,
Entrada: Estados
Camada 1: 16
Camada 2: 16
Camada3: 16

Saida: Diregao

Critico: Sequen-
cial, Entrada: Acgoes,
Estados

Camada 1: 32
Camada 2: 32
Camada3: 32

Saida: Booleana

(dimensao = Agoes)

Ator:Sequencial,
Entrada: Estados
Camada 1: 600
Camada 2: 300

Saida: Diregao

Critico:Sequencial,
Entrada: Acoes,
Estados

Camada 1: 600
Camada 2: 300

Saida: Booleana

(dimensao = Agoes)

Além disso, a partir de outros ambientes que podem ser encontrados em (26) observa-

se que para modelos em que o ntimero de estados é elevado o niimero de neurénios por
camada ¢ mais elevado. O niimero de camadas esté associado ao niimero de decomposigoes
espaciais da entrada de uma rede, enquanto o nimero de neurénios esté associado ao
numero de permutagoes espaciais e ambos sao configurados de acordo com a complexidade

da tarefa a ser resolvida.
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6 SOLUCAO PROPOSTA

Este capitulo detalha a solugao proposta, tanto no lado da simulacao do sistema

dindmico, quanto na parte da estruturacao do problema de Aprendizagem por Reforco

6.1 Simulacao para aprendizagem

Nesta secao os mecanismos utilizados de simulacao para a elaboracao da solugao sao

discutidos e os principais aspectos da solucao sao apresentados.

6.1.1 Simulador TPN: Uso e limitacoes

Como descrito no capitulo [4] o simulador TPN é um software para simulagao de na-
vegacao que ja foi extensivamente validado, e que é usado como suporte para simulagao
de manobras e para o aprendizado de novos pilotos. Para tanto o software apresenta uma
dindmica complexa, que considera nao s6 a dindmica do navio em 6 graus de liberdade
como também as equagoes fluidodindmicas na itera¢ao navio-ambiente (vento, correntes)

e na iteragao do propulsor e leme.

Se por um lado essa complexidade é essencial para a reproducao verossimil do com-

portamento do navio, por outro, ela impoe dificuldades para a aprendizagem por reforco.

Além disso o simulador do TPN se comunica com o ambiente de desenvolvimento em
python utilizando a interface simulador-python desenvolvida pela equipe do TPN e que
utiliza um protocolo local através de uma comunicacao via soquetes. Tal arquitetura de

comunicagao também impoe dificuldades para o aprendizado.

As dificuldades apresentadas pela complexidade do modelo e pela arquitetura de co-

municagao sao apresentadas a seguir.

D1 - Tempo de simulacao: A primeira delas esta relacionada ao tempo de simulacao,

utilizando a versao fast-time do simulador, o niimero de iteragoes por segundo alcan-
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¢ado nas configuracoes de teste apresentadas em, é em torno de 5 (iteragoes/s).
Ou seja para um processo de aprendizagem com 300 mil iteragoes como o usado em
(24), o tempo de simulagao seria em torno de 138 horas. Diminuindo a tolerancia de
integracao e desconsiderando os efeitos externos como o ventos e correntes, o tempo
de simulagao gira em torno de 30 iteragoes/s (parametro de treinamento TPN apre-
sentado em , ou seja 2h40 de treino para 300 mil iteracoes. Parte da lentidao

imposta pelo simulador é devida a estrutura de comunicagao.

D2 - Falhas de comunicacao: Um numero elevado de iteracoes pode favorecer erros
de comunicacao. Tal erro pode prejudicar a simulagao, uma vez que neste caso a
resposta do ambiente de simulagao (estado do navio) é divergente do real valor do

estado do navio.

D3 - Falha de reinicializacao: Foi identificada ao longo do projeto um erro na velocidade
do navio quando o simulador era exposto a um nimero elevado de reinicializacoes da
propulsdo, leme e posigao (realiza-se uma reinicializac¢do a cada inicio de episo6dio). O
problema deve-se ao fato do simulador nao ser projetado para muitas reinicializagoes
seguidas em uma mesma instancia. Este problema foi contornado iniciando-se uma
nova instancia de simulag¢ao a cada 10 episddios, o que induziu um aumento no

tempo de simulacao.

Tais dificuldades fizeram com que o requisito de projeto primario RP2 fosse reformu-
lado afim de aumentar a velocidade de simulagao e construir uma solugao que convergisse

para o cumprimento da missao proposta.

Nesse sentido, uma solugao alternativa que foi proposta e desenvolvida foi a realizagao
de um simulador simples de navegagao (SSN) em python, o qual foi utilizado para ensinar
o agente de APR as dinamicas basicas de navegacao. Em seguida para que o agente
fosse capaz de cumprir a missao proposta no simulador TPN, foi proposto o método
de Transferéncia de Aprendizado. Os detalhes sobre essa etapa sao detalhada na se¢ao

seguinte.

6.1.2 Simulador simples: Uso e desenvolvimento

O Simulador Simples de Navegacao (SSN) tem como finalidade reproduzir a dinamica
de navegacao de uma embarcacao afim de ser utilizada como suporte para o método de
aprendizagem. Sua utilizacao foi inspirada nos trabalhos relacionados como os citados em

b.1} O uso de tal simulador representa a reformulagao do RP2 e é descrito a seguir:
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e O sistema de APR deve basear-se na transicao de estados fornecida pelo SSN afim

de aprender uma dinamica de navegagao simples.

e Utilizando o agente aprendido no SSN, deve-se proceder para uma etapa de trans-

feréncia de aprendizagem (TA).

e Apobs a TA o agente deve apresentar uma performance compativel com as descritas

na segao [2.2.1]

O diagrama a seguir ilustra a estrutura de aprendizado desenvolvida a partir do SSN.

Pesos da

transferéncia

Pesos da

Rede S-1

Rede S-1 /

Pesos da

Rede S-2

Resultado
Performance

Aprendizado S-1

Agente

Estfdos
Redompensa

Ambiente

SSN

Aqoes

Aprendizado S-2

Estados

Agente

Recolnpensa

Ambiente
TPN

Adoes

Fim

Aprendizac_fo

Figura 11: TA usando SSN e simulador TPN

A

Teste Performance

Agente

Stados
ecompensa

Acoes

Ambiente
TPN

O simulador desenvolvido é um simulador em 3 graus de liberdade, utiliza as equagoes

apresentadas na secao [4 e implementa um método de integragdo Runge-Kutta de ordem

5. O tempo de simulagao utilizando o simulador simples gira em torno de 200 iteragdes/s

e nao ha erros de comunicagao, uma vez que o SSN foi desenvolvido em python.

Além disso o SSN utiliza a embarcagao com as mesmas caracteristicas do simulador

TPN, e o comportamento dinamico de simulacao foi ajustado para ser similar ao do

simulador TPN. Tal ajuste foi realizado através uma identificagao nao linear de parametros

utilizando-se como ferramenta auxiliar o software MATLAB.

O SSN esta atualmente disponivel online sob o nome de ShipAl para contribui¢ao

com a comunidade OpenAl Gym, assim como para contribuicao cientifica.
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6.1.3 Parametros de simulagao

Nesta secao os parametros de simulacao que influenciam o design da solucao sao

apresentados assim como suas justificativas.

P1

P2

P3

P4

Tempo de integracao (t;,;): O tempo de integragdo é o tempo que o método de
integragdo numérico (Runge-Kutta) utiliza como limite superior para integrar as
equacoes dinamicas que compoem o sistema fisico simulado. A cada iteracao do

simulador, o sistema dinadmico avanca t;,;.

Passo de integracao: O passo de integracao é o passo de tempo avancado a cada sub-
etapa de integracao numérica, este é funcao do tempo de integragao e da tolerancia

de integragao.

Tolerancia global (atol) e relativa (rtol): Tolerancias relativas e absolutas sao utili-
zadas explicitamente no SSN. O solver do SSN utiliza essas medidas para manter as
estimativas de erros locais menores que atol +rtol - ||(s;)]|, onde s; é o estado estado

integrado. No simulador TPN a tolerancia é controlado pelo parametro TOLcony -

Tempo de agao (taeao): O tempo de acdo define o intervalo entre o envio de duas
agoes consecutivas ao simulador (uma itera¢ao do algoritmo de aprendizagem). Ge-
ralmente é definido como sendo t,c.0 = Kint - tine. Ou seja uma iteracao terd K,

etapas de integracao numérica.

Primeiramente definiu-se fixo t,.,, = 10s, como requisitado em tanto para o

ambiente utilizando o simulador TPN quanto para o SSN. Esse valor foi definido com base

em dados empiricos de navegacao. Em seguida definiu-se as configuragoes de treinamento

e teste para o simulador TPN e SSN como se segue:

Configuragao de treinamento e teste SSN:

tint = tacao = 10 S,
atol = le—4, (6.1)
rtol = 1le—6.

Configuracao de treinamento (TA) TPN:

tint = tacao = 10 S,

TOLCONV = le—3.
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e Configuracao de teste TPN:

tacao = 10 S,
TOLCONV = le—3.

6.2 Estruturacao do problema de APR

Nessa se¢ao é descrita a estrutura dada ao problema de APR, desde a defini¢ao de
parametros até os algoritmos utilizados. O problema foi modelado afim de atingir a missao

descrita em e respeitando os requisitos descritos em [2.2.1]

6.2.1 Algoritmos

Dadas as solucoes propostas na literatura, escolheu-se para a analise a comparagao
do método variante de Q-learning aproximado - DQND eo DDPGE|.

6.2.2 Estados utilizados

O problema da manobra de embarcacoes possui varias variaveis de estado, seja em
posicao, rotagao, velocidade, etc. Para simplificar o problema e permitir sua aplicagao em
APR, foram selecionadas aquelas consideradas essenciais na manutenc¢ao de uma trajetoria

dada durante a navegacao. O estado escolhido foi

s=(d,0,v,,vy,0), (6.4)

onde:

e d: Distancia do centro de massa do navio a linha-guia

e 0: Angulo entre o eixo longitudinal do navio e a linha-guia

e v,: Velocidade horizontal do navio no seu centro de massa (na direcao da linha-guia)
e v,: Velocidade vertical do navio no seu centro de massa (perpendicular & linha-guia)

e 0: Velocidade angular do navio

Lef. 13.4.4.3
2cf. 3.4.5.1
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Essas variaveis de estado estao ilustradas na figura

Figura 12: Esquema do navio com estados utilizados na APR

6.2.2.1 Limites admitidos

Os limites admitidos para os estados no algoritmo de APR sao descritos a seguir.

Caso o agente ultrapasse tais limites, o episddio é encerrado.
d € [0,150] m,

™ T
0 € [—5,5] rad,

vy € [0,4] m/s, (6.5)
v, € [—4,4] m/s,
0 [— g,g] rad/s.

O limite maximo de d decorre do ambiente utilizado na analise, como descrito mais a

frente neste capitulo, na segao [6.2.5.2]

6.2.2.2 Inicializacao dos estados

A inicializacao do estado de cada episddio é feita aleatoriamente, porém com limites
menores que os admitidos, para garantir a navegabilidade e manobrabilidade do navio no
estado inicial, dando estabilidade ao algoritmo de aprendizagem. Buscou-se utilizar esta-
dos iniciais compativeis com aqueles que ocorrem durante a entrada de uma embarcacao

em um canal. Tais limites sao mostrados abaixo:

do € [0,30] m,
Tom
b € [—1—5,1—5] rad,
vz € [1,2] m/s, (6.6)

vy, € [—0.4,0.4] m/s,
fo = 0rad/s.
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6.2.3 Acoes de comando

As agoes de comando foram desenvolvidas para controlar o angulo de leme e a propul-
sao do navio. Como descrito na secao , as agoes de comando tem a forma Ay = [4;, A,],
onde A; é o comando adimensional de leme e A, o comando adimensional de propulsao,
de tal forma que A4; € [-1,1] e A, € [0,1].

Para o DQN, as agoes foram discretizadas afim de se adequar ao modelo, para tanto,
optou-se por dividir o espaco de acoes de leme em 21 agoes discretas, e o espaco de acgoes
de propulsao em 3. Tal divisao foi feita com base em técnicas empiricas de navegacao de

praticos. Sendo assim tem-se que:

Ay = (47N, AP,

SSN AP € {—1,-0.9,-0.8, ...,0.9, 1},

TPN :APN € {~1,-0.9,-0.8,...,0.9,1} /3,
DQN

ADN € {0,0.1,0.2}.

Optou-se por reduzir os angulos de leme no DQN pois notou-se um melhor compor-
tamento desta maneira no simulador TPN. Para o DDPG, as agoes sao do tipo continuo,
porém limitou-se as agoes de leme e propulsao como se segue:

ADDPG _ [ 4DDPG. AI]))DPG ’

APPPG € [-1/3,1/3
SSN :ADPPS € [0,0.2
TPN :APPP¢ € [0,0.24].

]
) (6.8)
]
]

)

A heuristica da limitagao de leme deu-se pois a partir de simula¢des preliminares
identificou-se que com o comando de leme entre -10° e 10° é possivel controlar a diregao
da embarcagao, comecando com os estados citados em [6.2.2.2| Tal procedimento pode ser

entendido como uma adaptagao simples entre os simuladores SSN e TPN.

Para o controle de leme optou-se por controlar a propulsao com empuxos positivos, e
o limite definido em 0.2 é suficiente para acelerar o navio até a velocidade de setpoint no
SSN, para o simulador TPN aumentou-se esse limite em 20%, apos testes empiricos que

mostraram uma melhor performance com essa configuracao.
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6.2.4 Definicao das recompensas

As recompensas, apesar do nome, comumente sao valores negativos dados ao agente,
pois devem punir estados/a¢oes indesejaveis proporcionalmente ao quao indesejaveis eles
sao. Em alguns casos, no entanto, pode-se dar recompensas positivas quando o agente
atinge um objetivo, por exemplo. No caso de navegacao considerado, decidiu-se utilizar
uma recompensa negativa para os desvios do navio em relacao ao setpoint de estados
desejado, com uma certa tolerancia. Optou-se por dividir os desvios pelos desvios méximos
tolerados no treinamento, para facilitar a ponderacao das importancias de cada desvio.

A recompensa utilizada segue a féormula abaixo:

d 0 Uy — U v 0
r(8) = kot — kg ¥ i — kg X id — ky, ><—| v = Vsl — ky, X [vy] —kg><—.| | , (6.9)
dmax Qmax Uzmax Uymax max
onde:

e k;,: Constante de tolerancia da recompensa, define a margem de erro que o navio
pode cometer ainda possuindo uma recompensa positiva;

o {kq, ko, ky,, Ky, kg}: Constantes de proporcionalidade das recompensas, ajustam a
importancia dada a cada um dos desvios;

e v, Setpoint de velocidade do navio;

® {dmax: Omaxs Vzpax > Uyma > Omax 1 Limites maximos admitidos para os estados (vide

equagao [6.9)).

Nos testes realizados, utilizou-se kio, by, , ko, kg =1 € kg ko =8 .

6.2.5 Parametrizacao

6.2.5.1 Hiper-parametros

Para a parametrizacao do modelo, buscou-se utilizar parametros coerentes com o que
se encontra nos trabalhos relacionadosﬁ e com a complexidade do problema a ser resolvido.

Os hiper-parametros utilizados em cada método sao mostrados na tabela abaixo:

3cf.
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Tabela 2: Hiper-parametros utilizados nos métodos aplicados ao problema do navio

Métodos

DQN

DDPG

Espaco de Estados

Dimensao: 5, Tipo: Continuo

Dimensao: 5, Tipo: Continuo

Espaco de Ac¢oes

Dimensao: 2, Tipo: Discreto
(3 intensidades de propulsao

e 20 angulos de leme)

Dimensao: 2, Tipo: Continuo

Tipo de RNA

DQN com Replay de
Experiéncia e RNA Alvo

DDPG: Ator-Critico, Replay
de Experiéncia, RNA Alvo

Arquitetura da(s)
RNA(s)

Sequencial, Entrada: Estados,
4 camadas: [256,128,64,33]
neurodnios, Ativacao ReLU
nas camadas ocultas, linear
na de saida, Saida: Valores
de agdo, Otimizacao: Adam,

taxa de aprendizagem le—3

Ator: Sequencial, Entrada:
Estados, 3 camadas: [400,300,2]
neurénios, Ativacao ReLU nas
camadas ocultas, Softsign na
de saida, Saida: Acao,
Otimizacao: Adam,

taxa de aprendizagem le—4

Critico: Sequencial, Entrada:
Acgoes, Estados, 3 camadas:
[400,300,1]| neurénios, Ativagao
ReLU nas camadas ocultas,
linear na de saida, Saida:
Booleana (dimensao = Agdes),
Otimizacao: Adam, taxa de

aprendizagem le—3

Treinamento

Iteragoes: 400000, v = 0.99
Politica: e-greedy, decaimento
linear de e de 1 a 0,1
Memoria do Replay de
Experiéncia: 20000 transicoes
Atualizacao Dura do

Modelo Alvo: C' = 1000

Iteragoes: 600000, v = 0.99
Processo Aleatorio: Ornstein
Uhlenbeck (6 = 0.3,
p=0,0=0.3),

Memoria do Replay de
Experiéncia: 20000 transicoes
Atualizacao Mole do

Modelo Alvo: C' = le—2

Transferéncia de

Aprendizagem

MPI com 50000 iteracoes,
Decaimento linear de ¢ de

0,1 a 0,01

MPI com 100000 iteracoes,
Restante dos parametros

iguais aos do treinamento
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6.2.5.2 Ambiente

O ambiente utilizado para aprendizagem tem sua estrutura baseada nos modelos de
ambientacao OpenAl Gym. Tanto para o SSN como no caso do TPN utilizou-se a mesma,
interface grafica e ambientacao. Tal estruturacao foi baseada nos trabalhos relacionados

como citado em [B.1] .

O cenario utilizado nos experimentos realizados foi inspirado no canal de acesso do
Porto de Suape, localizado em Recife, Pernambuco, no Nordeste brasileiro. O canal foi
dimensionado como sendo retangular de 5000 metros de comprimento e 300 metros de
largura. A linha-guia que o navio deve seguir é a linha-média longitudinal do canal.

Temos entao os pontos inicial e final da trajetoria-guia definidos como:
(Xiniciat, Yinicial) = (0,0); (Xfinat, Yyinar) = (5000,0) m; (6.10)
e 0 espaco entre as duas retas que delimitam a largura do canal:
Econa = 300 m. (6.11)

O setpoint de velocidade do navio é de 2 m/s.
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7 RESULTADOS

Esta secao visa apresentar o resultado obtido no ambito do treinamento, teste e con-

trole final do navio utilizando os métodos DQN e DDPG.

7.1 Treinamento

Nesta secao avalia-se os fatores de aprendizagem e de TA nos processos de DQN e
DDPG.

71.1 DQN

7.1.2 Recompensa acumulada treino SSN

Uma das maneiras de avaliar um algoritmo de aprendizagem é através da analise da
recompensa acumulada durante o treinamento como mostrado na figura . E possivel
observar que ap6s o episddio 2600 ha um salto no valor da recompensa do navio, pode-se
inferir que a partir de entao o navio deixou de colidir frequentemente com as bordas do

canal e passou a alcancar 5000 m de navegacao sem colisao.

Evolucao do Reward - DQN Treino SSN

—200 A
—400 1
—600 1
—800 -
—1000
—1200
—1400 -

0 500 1000 1500 2000 2500 3000
Episodios

Figura 13: Recompensa acumulada treino no SSN - DQN
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E notavel também a presenca de ruido na evolucdo da recompensa acumulada, isso
pode ser explicado pelo carater aleatorio das inicializagoes de estados, o que, por sua vez,
gera diferengas expressivas no desempenho geral do episédio. Ou seja, quando o navio
inicia suas condigoes de navegacao com baixo angulo de aproamento e baixa distancia
da linha-guia é mais facil para o agente controlar o navio do que quando o ambos sao

elevados.

Apesar de nao ser visivel um grande aumento na recompensa apés o salto por volta
dos 2600 episddios, o navio continua seu aprendizado a cada episédio, porém de forma

menos visivel pelo grafico de recompensa acumulada.

7.1.3 Recompensa acumulada TA TPN

O grafico de recompensa acumulada para o processo de TA é mostrado na figura [14]
a primeira parte da TA consiste em uma etapa de warm-up (aquecimento), em que as
acoes do agente do SSN sao registradas na memoria dos batch de estados, a regiao até
50 episodios apresenta portanto alto valor de reward, logo em seguida a TA ¢é inicializada
com uma politica com e-greedy descendente, portanto, o gréfico apresenta uma regiao de

baixa recompensa seguida por um aumento no final do episéddio.

Durante os experimentos de TA nao houve melhora expressiva no desempenho da
navegacao. Diversas grandezas para o numero de iteracoes foram estudadas, porém nao
observou-se melhorias com o aumento do niimero de iteracoes, portanto chegou-se a con-
clusao de que 50 mil iteracoes de TA eram suficientes para uma navegacao de desempenho

analogo as demais grandezas.

Atribui-se esse resultado & limitagao de controle da politica DQN associada ao sistema
de Hard Target Update, o qual pode apresentar oscilacao na otimizacgao de politicas para

alguns modelos de aprendizagem.
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Evolucao do Reward - Treino DQN TPN

—200

—400 +

—600

Reward

—800

—1000 +

—1200 -

0 25 50 75 100 125 150 175 200

oo oA _

Figura 14: Recompensa acumulada treino no TPN - DQN

7.1.4 DDPG

7.1.5 Recompensa acumulada treino SSN

Observa-se que apods o episdédio 500 ha um salto no valor da recompensa do navio,
pode-se inferir que a partir de entao o navio deixou de colidir frequentemente com as

bordas do canal e passou a alcancar 5000 m de navegacao sem colisao.

Evolucao do Reward - DDPG Treino SSN

0 -
—250 A I
B —500 1
2
—750 A
2
—1000 -
—1250 A I
T T T T T T T
0 500 1000 1500 2000 2500 3000
Episodios

Figura 15: Recompensa acumulada treino no SSN - DDPG

Assim como no caso anterior, observa-se a presenca de ruido na evolucao da recom-

pensa acumulada, isso pode ser explicado pelo carater aleatério das inicializagoes de es-

tados.
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7.1.6 Recompensa acumulada TA TPN

A recompensa acumulada pode ser usada para analisar-se também a TA. Nesse caso
porém, nao se observa um grande aumento no acimulo de recompensas, porém, como

observado na segao [7.2.5 o desempenho da navegagao é melhorado.

Evolucao do Reward - Treino DDPG TPN

—250 +

—500

—750 1

Reward

—1000

T T T T T T
0 50 100 150 200 250 300 350
Episodios

Figura 16: Recompensa acumulada TA no TPN - DDPG

7.2 Andlise de Performance

Nessa secao uma anélise da performance da politica de navegacao é realizada. Busca-
se avaliar a qualidade da navegagao em relagao a convergéncia da distancia (d) e velocidade
horizontal (v,), assim como analisa-se os demais estados observaveis, tais como o angulo

de ataque (), velocidade de rotacdo (8) e velocidade de aproximacao (v,).

Para analisar a performance do agente durante a tarefa de controle da embarcagao

usando o DDPG e o DQN foram realizados testes de performance em trés etapas:

1 Performance do agente em navegagao no SSN com os pesos da rede neural treinada
no SSN

2 Performance do agente em navegacao no TPN com os pesos da rede neural treinada
no SSN

3 Performance do agente em navegagao no TPN com os pesos da rede neural apds a
TA no TPN

Com os resultados de 1 pode-se justificar o treinamento inicial no agente DDPG para
posterior TA. Com os resultados de 2 pode-se avaliar a viabilidade do TA assim como a

coeréncia do modelo SSN em relagao ao TPN em relacao a tarefa de aprendizado. Com
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os resultados de 3 pode-se avaliar o resultado da TA, assim como o cumprimento dos

requisitos de projeto e performance.

Para cada uma das trés andlises, utilizou-se dois cenarios para avaliacao de perfor-

mance:

e Cenario 1:

100 episédios com inicializacao aleatéria assim como descrito em [6.2.2.2] O objetivo
¢ avaliar a sobrevivéncia da navegacao, ou seja a auséncia de colisao com o canal
durante os episodios. Além disso pode-se avaliar de forma geral a convergéncia da

distancia (d — 0) e a convergéncia de velocidade (v, — 2 m/s) .

e Cenario 2:

10 episoddios com inicializagao definida, de tal modo que os estados iniciais sejam

S; — [dz, Qi, VT;, VY, 91], onde:

di =30 m,

k m
9:E~Erad, ]{?:0,1,2,...,9,

va; = 1.5 m/s, (7.1)

Uai = va; - cos(0) e vy; = va; - sin(0),

0, = 0.

O objetivo do cenario 2 é observar a evolucao dos estados observaveis para cada
uma das inicializagoes, assim como avaliar a performance das agoes. Dessa forma é

possivel avaliar a convergéncia e o carater da acao de leme e propulsao.

7.2.1 DQN
7.2.2  Performance no SSN

e Resultado cenario 1:
Nenhuma colisao. Convergéncia oscilatoria para a distancia com d < 20 m, nao con-
vergéncia da velocidade, apesar de haver uma rampa ascendente para a velocidade.
e Resultado cenéario 2:

Nos 10 episodios houve a convergéncia da distancia d < 25 m, com oscilagao do

navio e um erro estacionario de 20 m como observado na figura [17]
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Além disso observa-se que nao ha convergéncia para a velocidade desejada, apesar

da velocidade apresentar perfil ascendente.

O DQN nao ¢ capaz de controlar o angulo de navegacao para suavizar a dire¢ao do

navio e nao consegue otimizar a velocidade.

Evolugéao dos estados
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Figura 17: Evolugao de estados observaveis DQN SSN

7.2.3 Performance no TPN antes da TA

e Resultado cenério 1:

Nenhuma Colisao. Convergéncia oscilatéria para a distancia com d < 18 m, nao

convergéncia da velocidade.

e Resultado cenério 2:
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Em 9 dos 10 episoédios houve a convergéncia da distancia, com oscilagao inferior a
18 metros como observado na figura [I§ O episodio mais critico levou & colisdo do
navio, mostrando o ambiente SSN nao é capaz de representar a dindmica do TPN

para o caso do agente DQN.

Além disso observa-se que nao ha convergéncia para a velocidade desejada, pelo

contrario, houve uma queda para vy em torno de 1.2 m/s.

Evolugao dos estados
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Figura 18: Evolucao de estados observaveis DQN SSN

7.2.4 Performance no TPN apos a TA

e Resultado cenério 1:

Nenhuma Colisao. Convergéncia pouco oscilatoria para a distdncia com d < 15 m,

nao convergéncia da velocidade.

e Resultado cenério 2:
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Para os 10 episodios houve a convergéncia da distancia, com oscilagao inferior a 25

metros como observado na figura [T9

Além disso observa-se que nao ha convergéncia para a velocidade desejada.

Observa-se que o DQN apresenta limitagoes para o controle de velocidade e direcao

do navio.

Evolucédo dos estados
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Figura 19: Evolugao de estados observaveis DQN SSN
7.2.5 DDPG

7.2.6 Performance no SSN

e Resultado cenério 1:
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Nenhuma Colisao. Convergéncia geral da distancia, nao convergéncia da velocidade.
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e Resultado cenério 2:

Durante os 10 episdédios houve a convergéncia da distancia, com pouca ou nenhuma

oscilagao do navio como observado na figura

Além disso observa-se que nao hé convergéncia para a velocidade desejada, entre-
tanto, isso nao torna-se um problema pois espera-se convergir uma vez que haja

mais episodios de treinamento durante a TA.
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Figura 20: Evolugao de estados observaveis DDPG SSN

7.2.7 Performance no TPN antes da TA

e Resultado cenério 1: Nenhuma Colisao. Convergéncia geral da distancia, nao con-

vergéncia da velocidade.

e Resultado cenério 2:
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Em 9 dos 10 episodios houve a convergéncia da distancia (1 colisdo), com leve

oscilagao do navio como observado na figura [21]

Além disso observa-se que nao hé convergéncia para a velocidade desejada, entre-

tanto, como ja citado anteriormente espera-se em velocidade apos a TA.

E notavel que o agente seguindo a politica aprendida no SSN é suficiente para
controlar a posicao do navio durante a navegacao sem que haja nenhuma colisao.
Ainda que a velocidade nao tenha convergido, e que haja oscilagoes, é esperado que

a TA supere esses problemas.
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Figura 21: Evolugao de estados observaveis DDPG TPN antes TA
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e Resultado cenario 1: Nenhuma Colisao. Convergéncia geral da distancia, conver-

géncia da velocidade.

e Resultado cenéario 2:

Durante os 10 episddios houve a convergéncia da distancia, com uma leve ou ne-

nhuma oscilagdo do navio como observado na figura 22} Além disso, observa-se

que ap6s a TA houve uma tendéncia de convergéncia para a velocidade desejada

no fim dos episddios. A velocidade de 1.8m/s (10% do setpoint) é atingida para

todos as inicializa¢oes por volta da iteracao 138, ou seja t = 1380s. Isso indica um

aperfeicoamento da politica de controle no ambiente de simulagao TPN.
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Figura 22: Evolugao de estados observaveis DDPG TPN apos TA
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7.3 Performance do ponto de vista de Controle

Em métodos de Controle Classico uma estrutura de controle é predefinida para rea-
lizar uma tarefa de controle bem estabelecida em um sistema fisico que normalmente é
modelado e utilizado para o design do controlador, como é o caso dos controles PID, LQR

e Controle Robusto.

Tal estrutura apos desenvolvida é analisada do ponto de vista do cumprimento de sua
tarefa em termos de robustez, tempo de assentamento, erro estacionario, entre outros.

Analisa-se também o acionamento e gasto energético do controlador.

Do ponto de vista da APR, porém, o sistema de controle pode ser entendido como
a politica aprendida pelo agente durante a aprendizagem, e nesse caso nao se realiza
diretamente o design das saidas das agoes de controle. Sendo assim ¢é essencial analisar-se

o desempenho do controle assim como sua viabilidade.

731 DQN

7.3.2 Tempo de Subida (Rise Time)

Para o caso do DQN nao é possivel analisar o tempo de assentamento em 10%, uma
vez que a margem de 10% nao ¢ alcancada devido as oscilagoes. Pode-se, porém, observar
que para todos os testes do cenario 2 descrito em , o tempo de subida (rise time) é
em torno de 1000 s, comparando-se com o DDPG, o qual possui um tempo de subida
entre 500 e 1200 s, observa-se que o DQN possui uma um tempo de resposta com menor

varidncia neste experimento.

7.3.3 Acoes de controle

As agbes de leme e propulsdo para o caso em que k = 4 descrito em [7.2] cenario 2 é

apresentado na figura [23]

Para as agoes de leme, observa-se um carater oscilatério entre os extremos de controle
[-1/3, 1/3|, com poucas graduagoes de amplitude, o agente utiliza-se apenas dos niveis 0.3,
0.2 0.1 e -0.3. Esse resultado ¢ fisicamente inviavel, pois ainda que o tempo de transigao
entre as posicoes do leme seja fisicamente realizével, o gasto energético e a possivel perda

de estabilidade de controle limitariam uma aplicacao préatica desse tipo de controle.

Para as acoes de propulsor, observa-se uma amplitude variavel entre 0, 0.1 e 0.2, ainda
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que nao haja pleno controle alcance do controle de velocidade adequada.

Acao de leme

0.3 1
0.2
o | FHT ﬂT L
%]
=
S 0.0
=
_0.]._
_0.2_
A 1
0 500 1000 1500 2000 2500 3000 3500
time (s)
Acao de propulsor
0.20 1 ] B ni l——‘ A N A
0.15
(7]
=
2 0.10 -
=
0.05 -
0.00

500 1000 1500 2000 2500 3000 3500
time (s)

=

Figura 23: Evolugao da agao, para o cenario 2 com k=4 DQN TPN apés TA

7.3.4 DDPG

7.3.5 Tempo de assentamento (Settling Time)

A figura a seguir apresenta o tempo de assentamento para os 10 experimentos descritos

em [7.2] cenario 2.

O tempo de assentamento (10%) para a distancia é crescente com relagdo ao niimero
de episddios, uma vez que o angulo de aproamento inicial aumenta com k, como descrito
no experimento. No caso mais favoravel obtém-se um tempo de cerca de 250 s e no mais

desfavoravel de cerca de 1100 s.

O tempo de assentamento da velocidade é levemente decrescente, mas é em torno de

1400 s.
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Figura 24: Tempo de assentamento DDPG

7.3.6 Acoes de controle

As agbes de leme e propulsao para o caso em que k = 10 (cenario 2) descrito em

é apresentado na figura [25]

Para as agoes de leme, observa-se um caréter oscilatorio entre os extremos de controle
[-1/3, 1/3], com poucas variagoes de amplitude. Esse resultado é fisicamente inviavel, pois
ainda que o tempo de transicao entre as posi¢oes do leme seja fisicamente realizavel, o
gasto energético e a possivel perda de estabilidade de controle limitariam uma aplicagao
pratica desse tipo de controle. A explicacao para esse comportamento pode estar ligada
a funcdo de ativacdo da ultima camada da rede neural (softsign), a qual possui uma

pequena zona de transi¢ao entre os extremos (+1, -1).

Para as acoes de propulsor, observa-se uma amplitude quase constante em torno de

0.24, o limite méaximo da acao de propulsao.
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Figura 25: Evolugao da agao, para o cenario 2 com k=10 DDPG TPN apoés TA

7.4 Avaliacao de requisitos

7.4.1 Requisitos Primarios

Os requisitos primérios foram cumpridos pela aplicacao do método de DDPG, porém

nao foram cumpridos pelo DQN no que se refere ao setpoint de velocidade e posic¢ao.

O requisito RP2 foi adaptado para que a solu¢ao pudesse implementar a TA, como

explicado em [6.1.2]

7.4.2 Requisitos Secundarios

o RS1 foi cumprido uma vez que realizou-se uma comparacao entre os métodos DQN

e o DDPG.

o RS2 nao foi explorado no escopo do trabalho.
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8 CONCLUSAO

Dados os resultados mostrados no capitulo anterior, pode-se concluir que é possi-
vel desenvolver uma lei de controle para o problema de navegacao em aguas restritas
utilizando-se métodos de Aprendizagem por Refor¢o sem uma complexidade muito ele-

vada.

O método DDPG mostrou um bom desempenho no cumprimento da tarefa, e o método
DQN mostrou-se insuficiente para controlar a velocidade e a direcao do navio, apresen-

tando oscilagoes de distancia.

Apesar de cumprir seus objetivos, os métodos apresentam limitacoes para apelagoes
praticas tais como: a avaliacao da robustez do sistema perante situagoes nao conhecidas
pelo agente; a adaptacao para a implementagao de uma lei de controle menos custosa
do ponto de vista energético; a viabilidade de navegacao dado os padroes de navegagao

oscilante na trajetoria.

8.1 Perspectivas futuras

Dada a criticidade do sistema abordado (acidentes nao sao tolerados pois podem ter
consequéncias drasticas), para a consolida¢ao do uso de Aprendizagem por Reforgo no
controle de embarcagoes, é necessario um estudo extensivo dos parametros utilizados no
treinamento. Para tanto sugere-se a verificacao da influéncia da atualizacao do modelo
alvo e da parametrizacao dos processos estocasticos no comportamento da resposta dada
pelo APR. Tal linha de estudos pode revelar influéncias e correlagoes entre o comporta-
mento de navegacao e os de hiper-parametros, as quais nao foram abordadas no escopo

desse trabalho.

Uma outra linha de trabalho possivel é a aplicacao de um filtro de tipo passa-baixa
nas acoes de comando geradas pelo APR afim de suavizar a resposta do sistema e evitar

as oscilagoes inviaveis apresentadas no comando de leme, por exemplo. Visto que a func¢ao
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de ativacao softsign na RNA utilizada pelo ator DDPG possui uma regiao de transicao
pequena, isso pode justificar a transicao abrupta das agoes de controle, que resulta nas
oscilagoes indesejaveis no leme. A utilizagao de outra funcao de ativagao, principalmente
na camada de saida, de tipo linear (ou outro que possua uma transi¢ao gradual) também

poderia ser uma linha de estudo para solucionar esse inconveniente.

Como uma opg¢ao extra para que o controle se torne mais continuo tem-se a possi-
bilidade de incluir o dngulo de leme nos estados observaveis na APR e de se modificar
a acao do comando de leme para que ela se torne incremental, afim de que as agoes do
agente sejam sempre vidveis fisicamente e visando uma reducao energética. Finalmente,
pode-se também estudar o desacoplamento das a¢oes de leme e de propulsao do afim de

analisar-se o cumprimento dos objetivos de maneira independente.
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APENDICE A — PARAMETROS DO SIMULADOR

A.1 Parametros do Navio

Tabela 3: Coeficientes da matriz de massa e massa adicional

M 115000

Iz 414000000
M11 14840.4
M22 174050
M26  38369.6
M62 36103
M66 364540000

1076 Kg
1076 Kg.m"2
1076 Kg
1076 Kg
1076 Kg.m
1076 Kg.m
1076 Kg.m"2

Tabela 4: Dimensoes do Navio

Comprimento (L)

Boca (B)

Calado |Draft| (D)

Centro de Massa (Xg, Yg, Zg)
Posigao do leme (X1, Y1, Z1)
Posi¢ao do Propulsor (Xp, Yp, Zp)
Area molhada (S)

Centro de Cross-Flow (Ip)

244.745

42

15.3
(2.223 , 0.000, 12.300)
(-115, 0, 6)
(-112.4, 0, 3.5)

27342

7.65

B B B B B BE B B

>
(N
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A.2 Parametros Hidrodinamicos

Tabela 5: Constantes hidrodindmicas da agua e parametros aproximados de arrasto do

navio
Densidade da agua (p) 1.025 1073 Kg'm~-3
Viscosidade Dinamica(p) 1.002 107°-3 kg(m-s)"-1
Coeficiente de arrasto lateral (Cy) 0.06 adimensional
Coeficiente de Bloco (Cb) 0.85  adimensional

A.3 Parametros do propulsor

Tabela 6: Parametros dimensionais do propulsor

Rotac¢ao Méxima (np) 1.6 Hz
Limites de Empuxo (Tpmin, Tpmax) (-1377, 2500) kN
Diametro (Dp) 7.2 m

A.4 Parametros Do Leme

Tabela 7: Parametros dimensionais do leme
Limites de angulo (¢maz, Omin) (=30, 30)  © (graus)

Area efetiva (A,.q) 68 m~2

Razao de aspecto (A) 2 adimensional



